
Skriptgrundlagen für Designer
AEM 6.2 Forms

Rechtliche Hinweise
Rechtliche Hinweise finden Sie unter https://helpx.adobe.com/de/legal/legal-notices.html.
Letzte Aktualisierung 2/5/18

Inhaltsverzeichnis

Informationen zu diesem Dokument . 1
Zielsetzung dieser Einleitung . 1
Zusätzliche Informationen . 2

Skripterstellung mit Designer . 3
Funktionsweise von Skripten . 3
Objekte, die Berechnungen und Skripte unterstützen . 4
Beziehungen zwischen Objekten in der Objektbibliothek . 5
Skript-Editor . 7

Konfigurieren von Designer für die Skripterstellung . 10
So zeigen Sie den Skript-Editor an . 10
So wechseln Sie von der einzeiligen zur mehrzeiligen Ansicht 10
So legen Sie die Standard-Skriptsprache für neue Formulare fest 10
So legen Sie die Standard-Skriptsprache für das aktuelle Formular fest 11
So legen Sie die Standard-Skriptsprache für das aktuelle Formular fest 11
So legen Sie die Standard-Skriptsprache für eine Formularvorlage fest 11
So legen Sie die Standard-Skriptsprache für eine Formularvorlage fest 12
So legen Sie die Standard-Anwendung für die Verarbeitung fest 12
So legen Sie die Standard-Anwendung für die Verarbeitung fest 13
So ändern Sie die Standardanwendung für die Verarbeitung für eine Formularvorlage 14
So ändern Sie die Standardanwendung für die Verarbeitung für eine Formularvorlage 14
So zeigen Sie arabische, hebräische, thailändische und vietnamesische Zeichen an 15
Berechnungen und Skripten mit dem Arbeitsbereich debuggen 15

Berechnungen und Skripten erstellen . 18
Namenskonventionen für Formularentwurfsobjekte und Variablen 18
i

Skriptsprache wählen . 19
So erstellen Sie eine Berechnung oder ein Skript . 21
So erstellen Sie eine Berechnung oder ein Skript . 22
So suchen Sie nach Text oder anderen Objekten . 23
So ersetzen Sie Text oder andere Objekte . 24
So erstellen Sie Berechnungen und Skripten mit dem Anweisungsende 25
So fügen Sie eine Objektreferenz-Syntax automatisch ein . 25
Festlegen, wann eine Berechnung oder ein Skript ausgeführt werden soll 26
So zeigen Sie Skriptereignisse und Skripten an . 27
Festlegen, wo eine Berechnung oder ein Skript ausgeführt werden soll 29
Berechnungen und Skripten testen und debuggen . 30
So prüfen Sie die Skriptsyntax . 31
Sicherheitseinschränkungen umgehen . 32

Ereignisse . 33
Ereignistypen . 33
Prozessereignisse . 34
Interaktive Ereignisse . 36
Anwendungsereignisse . 39
calculate-Ereignis . 40
change-Ereignis . 42
click-Ereignis . 43
docClose-Ereignis . 44
docReady-Ereignis . 45
enter-Ereignis . 46
exit-Ereignis . 47
form:ready-Ereignis . 48
full-Ereignis . 49
indexChange-Ereignis . 50
initialize-Ereignis . 51
layout:ready-Ereignis . 52
mouseDown-Ereignis . 53
mouseEnter-Ereignis . 54
mouseExit-Ereignis . 55
mouseUp-Ereignis . 57
postOpen-Ereignis . 58
postPrint-Ereignis . 59
postSave-Ereignis . 60
postSign-Ereignis . 61
postSubmit-Ereignis . 62
preOpen-Ereignis . 63
prePrint-Ereignis . 64
preSave-Ereignis . 65
preSign-Ereignis . 66
preSubmit-Ereignis . 67
validate-Ereignis . 68
 ii

Skripterstellung mit FormCalc und JavaScript . 70
FormCalc verwenden . 77
Integrierte Funktionen verwenden . 78
Basisberechnungen erstellen . 79
JavaScript verwenden . 82
Skripten mit JavaScript erstellen . 82
Strikte Scoping-Regeln in JavaScript erzwingen . 83
So fügen Sie einem Objekt ein JavaScript-Skript hinzu . 87

Variablen . 88
Variablen benennen . 88
So definieren Sie Textvariablen . 89
So definieren Sie Textvariablen . 89
So zeigen Sie die Definition einer Textvariablen an . 90
So zeigen Sie die Definition einer Textvariablen an . 90
So löschen Sie Textvariablen . 91
So löschen Sie Textvariablen . 91
Variablen in Berechnungen und Skripten verwenden . 91

Objekte in Berechnungen und Skripten referenzieren . 93
Objekteigenschaften und -werte referenzieren . 94
Unbenannte und wiederholte Objekte referenzieren . 96
Aktuelles Objekt referenzieren . 98
Referenz-Syntax-Kurzbefehle für FormCalc . 99

JavaScript-Funktionen erstellen und wiederverwenden . 107
So erstellen Sie ein Skriptobjekt . 107
So fügen Sie einem Skriptobjekt Skripten hinzu . 108
So referenzieren Sie JavaScript-Funktionen in einem Skriptobjekt 109

Skriptfragmente verwenden . 110
Eigenschaften von Skriptfragmenten . 110
So erstellen Sie ein Skriptfragment . 111
So fügen Sie ein Skriptfragment ein . 111

Debugging von Berechnungen und Skripten . 113
Warn- und Prüfmeldungen in der Palette „Bericht“ von Designer 113
Debugging-Feedback mit der messageBox-Methode bereitstellen 114
FormCalc . 114
JavaScript . 114
Informationen in ein Textfeld ausgeben . 115
JavaScript-Debugging . 115
Tipps zum Debugging . 118
iii

Mit Host-Anwendungen arbeiten . 122
Eigenschaften und Methoden des Host-Skriptmodells . 122
Die Funktionalität des Host-Skriptmodells im Vergleich . 123

Mit dem Ereignismodell arbeiten . 125
Eigenschaften und Methoden des Ereignismodells . 125

Von der Skripterstellung in Acrobat zu Designer wechseln 127
Acrobat-Formulare mit Skripten konvertieren . 128
JavaScript-Objekte aus Acrobat in Designer verwenden . 128
In Designer unterstützte JavaScript-Objekte aus Acrobat . 129

Beispiele für gängige Aufgaben bei der Skripterstellung . 146
Hintergrundfarben von Feldern, Füllbereichen und Teilformularen ändern 146
Objekte ein- und ausblenden . 148
Objekte aus der Tab-Reihenfolge ausschließen . 153
Visuelle Eigenschaften von Objekten im Client ändern . 154
Aktuellen oder vorherigen Wert einer Dropdown-Liste abrufen 159
Beim Kopieren von Feldwerten die Rich-Text-Formatierung beibehalten 160
Höhe eines Feldes zur Laufzeit anpassen . 161
Felder zur Laufzeit als „Erforderlich“ festlegen . 162
Feldsummen berechnen . 163
Felder als Reaktion auf Benutzeraktionen hervorheben . 164
Die Werte des aktuellen Teilformulars zurücksetzen . 168
Präsenz von Formularentwurfsobjekten ändern . 168
Teilformulare mit Hilfe der Eigenschaften des Instanzmanagers steuern 170
Teilformulare mit Hilfe der Methoden des Instanzmanagers steuern 172
Teilformulare mit Hilfe des Instanzmanagers zur Laufzeit steuern 174
 iv

Informationen zu diesem Dokument
1. Informationen zu diesem Dokument
Willkommen zur Dokumentation „Grundlagen zum Erstellen von Skripten mit Designer“ Grund-
lagen zum Erstellen von Skripten liefert Ihnen einen Überblick darüber, wie Sie Designer-Berech-
nungen und -Skripte für die Entwicklung und Erweiterung von in Designer erstellten Formularen
einsetzen.

Sie können Berechnungen und Skripts für die Ausführung der folgenden Aktionstypen verwenden:

• Änderung von Verhalten und Erscheinungsbild von Objekten zur Laufzeit

• Steuerung der Darstellung von Feldwerten

• Interaktion mit Formularausfüllern über Dialogfelder und visuelle Hinweise

• Automatisierung der Formularausfüllung

• Steuerung der Host-Umgebung

• Interaktion mit Webdiensten

• Interaktion mit Datenbanken und Ausfüllen von Formularen mit Daten aus Datenquellen

HINWEIS: In diesem Dokument haben die Begriffe Adobe Experience Manager Forms, AEM Forms,
AEM Forms on JEE und LiveCycle dieselbe Bedeutung und sind untereinander austauschbar.
1.1. Zielsetzung dieser Einleitung
Grundlagen zum Erstellen von Skripten ist für Formularverfasser und -entwickler konzipiert, die
Berechnungen und Skripten zur Erweiterung ihrer Designer-Formulare einsetzen möchten. Es wird
angenommen, dass Sie Kenntnisse über Skriptsprachen haben, besonders JavaScript™sowie Objekt-
modelle. Sie sollten mit Adobe® Acrobat® Professional- oder Acrobat Standard vertraut sein und sich
mit dem Arbeiten in einer strukturierten XML-Umgebung auskennen.

Grundlagen zum Erstellen von Skripten geben Sie die folgenden Informationen an:

• Einführung in die Verwendung von Designer-Berechnungen und -Skripten zur Formularer-
weiterung

• Verständliche Anweisungen und Beispiele zu den Designer-Berechnungs- und -Skriptfunktionen

• Verweise auf weiterführende Informationsquellen zu Designer-Skriptfunktionen und ähnlichen
Technologien

Nach dem Lesen dieser Einleitung sollten Sie über ausreichende Kenntnisse zur Anwendung
der Designer-Berechnungen und -Skripten verfügen. Bei der Entwicklung von Formularen
verfügen Sie anhand der in dieser Einleitung enthaltenen Erläuterungen und Beispiele Sie über
entsprechende Anweisungen und Informationen zur erfolgreichen Fertigstellung Ihrer Projekte.
1

Informationen zu diesem Dokument 1
1.2. Zusätzliche Informationen
 2
Adobe bietet zahlreiche Informationsquellen zur Designer-Skripterstellung, sowohl für Formular-
verfasser als auch für Entwickler von Formularen.
1.2.1. Designer-Hilfe
Die Designer-Hilfe enthält detaillierte Informationen zur Produktverwendung, darunter auch
Hinweise zur Verwendung von Berechnungen und Skripten, und dient als erste Informationsquelle
bei der Suche nach Informationen zu Themen im Zusammenhang mit Designer. Sie können auf
folgende Ressourcen zugreifen Designer-Hilfe über das Hilfe-Menü oder online unter
Designer-Hilfe.
1.2.2. Grundlagen zum Erstellen von Skripten
Diese Einleitung liefert einen Überblick über das Erstellen von Berechnungen und Skripten mit
Designer. Sie enthält ausführliche Anleitungen zur Erstellung von Berechnungen und Skripten mit
FormCalc und JavaScript.
1.2.3. Skriptreferenz
Die Designer-Skriptreferenz ist eine umfangreiche Informationsquelle zu Modellen, Objekten,
Eigenschaften und Methoden, die in verwendet werden können. Das PDF-Dokument dient nur zum
Nachschlagen einzelner Informationen und enthält keinerlei Anleitungen zum Erstellen von
Berechnungen und Skripten.

Siehe Skriptreferenz.
1.2.4. Benutzerforen
Das Designer-Forum dient dem Austausch von Experten zu Themen im Zusammenhang mit Desi-
gner. Sie können Fragen anderer Leser beantworten, Produktprobleme melden oder eigene Fragen
an andere Formularverfasser oder Adobe-Experten stellen. Weitere Informationen finden Sie unter
www.adobeforums.com.
1.2.5. Beispielskripten
Beispielskripten sind funktionstüchtige Formulare oder Pakete mit Anweisungen zur Erstellung des
Beispiels und mit den zum Erstellen und Anzeigen des Formulars verwendeten Beispieldaten.
Adobe-Experten und andere Unternehmen fügen regelmäßig neue Beispiele hinzu. Siehe Developer
Center.

http://www.adobe.com/devnet/livecycle.html
http://www.adobe.com/devnet/livecycle.html
http://www.adobeforums.com
http://www.adobe.com/go/learn_aemforms_designer_62
http://www.adobe.com/go/learn_aemforms_scriptingBasics_62

Skripterstellung mit Designer
2. Skripterstellung mit Designer
Bei der Gestaltung von Formularen kann der Entwickler Berechnungen und Skripten verwenden,
um den Gebrauchswert für den Benutzer zu erhöhen. Sie können die meisten Formularfelder und
-objekte durch Berechnungen und Skripten ergänzen. Das folgende JavaScript-Skript multipliziert
beispielsweise die Werte von zwei numerischen Feldern und zeigt das Ergebnis in einem dritten
numerischen Feld an:

NumericField3.rawValue = NumericField1.rawValue * Numeric-
Field2.rawValue;

Auf einem anspruchsvolleren Niveau können Sie dann eigene Funktionen erstellen, die auf Ihre
individuellen Anforderungen hinsichtlich der Verarbeitung benutzerdefinierter Formulare zuge-
schnitten sind.

Designer unterstützt zwei Skriptsprachen, die jeweils auf die Anforderungen einer bestimmten
Gruppe von Formularentwicklern abgestimmt sind. FormCalc ist eine unkomplizierte, einfach
anzuwendende Berechnungssprache, deren Funktionalität sich an gebräuchlicher Tabellenkalkula-
tions-Software orientiert. Diese Skriptsprache enthält eine Vielzahl integrierter Funktionen, mit
deren Hilfe Sie Formularentwürfe im Handumdrehen erstellen können. JavaScript ist eine leistungs-
fähige Skriptsprache, die viel Flexibilität bei der Erstellung von Skripten bietet, wobei Sie bereits
vorhandene Kenntnisse über diese Sprache nutzen können.

Beachten Sie, dass es Ihnen völlig freigestellt ist, ob Sie in einem Formular Skripterstellung
verwenden. Sie können sich zwar für die Vorteile der Skripterstellung entscheiden, um den
Gebrauchswert des Formulars für den Benutzer zu erhöhen, viele der leistungsstarken Funktionen
stehen in Designer aber auch ohne die Anwendung von Skripten zur Verfügung. Durch Skripterstel-
lung können Sie jedoch fast alle Aspekte der Formulargestaltung steuern.

HINWEIS: Sie können gängige interaktive Funktionen in Formularen mit flexiblem Layout auch über
das Dialogfeld „Aktionsgenerator“ im Menü „Extras“ erstellen, ohne Skripten zu schreiben.
2.1. Funktionsweise von Skripten
Designer-Skripterstellung funktioniert auf der Grundlage eines ereignisbasierten Modells, das es
Ihnen erlaubt, verschiedene Aspekte von Objekten in einem Formular zur Laufzeit zu ändern. Sie
fügen als Formularentwickler Skripten zu Objekten in Abhängigkeit vom gewünschten Ausfüh-
rungszeitpunkt des Skripts hinzu. Sie platzieren beispielsweise das folgende Skript auf das click
-Ereignis eines Schaltflächenobjekts, sodass zur Laufzeit, wenn ein Benutzer auf die Schaltfläche
klickt, ein Feld mit einer Meldung angezeigt wird:

xfa.host.messageBox("This is a message for a form filler.",
"Benutzer-Feedback", 3);
3

Skripterstellung mit Designer 2

 4
Einem bestimmten Ereignis zugeordnete Skripten werden immer dann ausgeführt, wenn das jewei-
lige Ereignis stattfindet. Einige Ereignisse können mehrmals innerhalb einer Formularausfüllsitzung
stattfinden. Das folgende Skript erhöht beispielsweise den aktuellen Wert eines numerischen Felds
um den Wert 1:

NumericField1.rawValue = NumericField1.rawValue + 1;

Wenn Sie dieses Skript zum calculate -Ereignis für NumericField1 hinzufügen, wenn Sie
das Formular das erste Mal öffnen, zeigt NumericField1 den Wert 2 an. Dies zeigt an, dass das
calculate -Ereignis in der Reihenfolge der Ereignisse beim Öffnen des Formulars zweimal statt-
gefunden hat.

VERKNPFTE LINKS:
Ereignisse
Objekte, die Berechnungen und Skripte unterstützen
Beziehungen zwischen Objekten in der Objektbibliothek
2.2. Objekte, die Berechnungen und Skripte unterstützen
Die folgende Tabelle gibt Ihnen einen Überblick über die Skriptunterstützung für die Standardob-
jekte, die in Designer auf der Palette „Objektbibliothek“ enthalten sind.

Objekte, die Berechnungen und Skripte unterstützen
Objekte, die keine Berechnungen und Skripten

unterstützen

Barcodes Kreis

Schaltfläche Inhaltsbereich

Kontrollkästchen Linie

Datums-/Uhrzeitfeld Rechteck

Dezimalfeld Bild

Unterschriftsfeld Teilformularsätze

Dropdown-Liste Tabellenabschnitte

E-Mail-Senden-Schaltfläche Text

HTTP-Senden-Schaltfläche

Bildfeld

Listenfeld

Skripterstellung mit Designer
VERKNPFTE LINKS:
Beziehungen zwischen Objekten in der Objektbibliothek

Numerisches Feld

Papierformular-Barcode

Kennwortfeld

Drucken-Schaltfläche

Optionsfeld

Zurücksetzen-Schaltfläche

Teilformular

Tabelle (einschließlich Textzeilen, Kopf- und Fußzeilen)

Textfeld

Objekte, die Berechnungen und Skripte unterstützen
Objekte, die keine Berechnungen und Skripten

unterstützen
2.3. Beziehungen zwischen Objekten in der Objektbibliothek
Beim Erstellen von Berechnungen und Skripten in Designer sollten Sie daran denken, dass die
Objekte, für die Sie Skripten hinzufügen, in der zugrunde liegenden XML-Formulararchitektur als
XML-Objekte definiert sind. Die Registerkarte „Standard“ der Palette „Objektbibliothek“ enthält
zwar eine breite Vielfalt von Objekten, jedoch werden viele dieser Objekte durch dasselbe
XML-Objekt definiert. Die verschiedenen verfügbaren Skripteigenschaften und -methoden basieren
daher auf der Definition des XML-Objekts und nicht auf dem Objekt in der Palette „Objektbiblio-
thek“.

Auf der Registerkarte „Standard“ in der Palette „Objektbibliothek“ verfügbare Objekte, die auf
derselben XML-Objektdefinition basieren, verwenden einen Satz gemeinsamer Eigenschaften und
Methoden. Wenn Sie den Abschnitt Skriptobjekte lesen, können Sie sich mit den verfügbaren Eigen-
schaften und Methoden vertraut machen. Jede zugrunde liegende XML-Objektdefinition enthält
wiederum ein untergeordnetes Objekt, das das Erscheinungsbild des Designer-Objekts steuert.

Beispiel: Für das Durchsuchen der Eigenschaften und Methoden, die in Designer für das Objekt
Datum/Uhrzeit-Feld zur Verfügung stehen, beginnen Sie mit dem field -Objekt. Falls Sie sich das
entsprechende XML-Objekt ansehen möchten, das das Erscheinungsbild des Datums-/Uhrzeitfelds
steuert, zeigen Sie das dateTimeEdit -Objekt an.
5

http://www.adobe.com/go/learn_aemforms_scriptingReference_62
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fb6.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html

Skripterstellung mit Designer 2

 6
In der nachstehenden Tabelle wird die Zuordnung der auf der Registerkarte „Standard“ in der
Palette „Objektbibliothek“ von Designer angezeigten Objekte zu dem entsprechenden XML-Formu-
lararchitektur-Objekt veranschaulicht.

VERKNPFTE LINKS:
Objekte, die Berechnungen und Skripte unterstützen

Objektbibliothek-Standardobjekt
XML-Formulararchitektur-

Objekt (Basisobjekt)
XML-Formulararchitektur-

Objekt (UI)

Barcodes field barcode

Schaltfläche field Schaltfläche

Kontrollkästchen field checkButton

Datums-/Uhrzeitfeld field dateTime

Dezimalfeld field numericEdit

Unterschriftsfeld field signature

Dropdown-Liste field choiceList

E-Mail-Senden-Schaltfläche field Schaltfläche

HTTP-Senden-Schaltfläche field Schaltfläche

Bildfeld field imageEdit

Listenfeld field choiceList

Numerisches Feld field numericEdit

Papierformular-Barcode field barcode

Kennwortfeld field passwordEdit

Drucken-Schaltfläche field Schaltfläche

Optionsfeld field checkButton

Schaltfläche „Zurücksetzen“ field Schaltfläche

Teilformular subform Nicht zutreffend

Tabelle (einschließlich Textzeilen,
Kopf- und Fußzeilen)

subform Nicht zutreffend

Textfeld field textEdit

http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f8e.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f94.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f94.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f7a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fc4.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fc4.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fc4.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fc4.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fc4.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f47.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f47.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fa2.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fbf.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fbf.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fc0.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fc0.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fb7.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fcc.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7fcc.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f83.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7f4a.2.html

Skripterstellung mit Designer
2.4. Skript-Editor
Der Skript-Editor ist die Komponente, in der Sie die Berechnungen und Skripten für ein bestimmtes
Formular erstellen, modifizieren und anzeigen. Mit dem Skript-Editor können Sie beispielsweise
eine einfache Berechnung schreiben, die die Summe der Werte zweier numerischer Felder
berechnet, oder auch komplexere Skripten erstellen, die die Darstellung des Formulars in Abhängig-
keit von den Aktionen des Endbenutzers anpasst. Designer unterstützt die Skripterstellung in der
anwendungseigenen Programmiersprache FormCalc oder in JavaScript.

Der Skript-Editor wird standardmäßig oben im Designer-Arbeitsbereich angezeigt, kann aber auch
an jeder beliebigen anderen Stelle verankert werden. Er verfügt sowohl über eine einzeilige als auch
über eine mehrzeilige Ansicht, zwischen denen Sie je nach Anforderung jederzeit wechseln können.
Die einzeilige Ansicht soll dafür sorgen, dass möglichst viel Platz für den Layout-Editor und andere
Paletten zur Verfügung steht, wogegen die mehrzeilige Ansicht möglichst viel Platz für die Skripter-
stellung bereitstellen soll.

Anzeigen
Listet alle Ereignisse des Formularentwurfs auf, die benutzerdefinierte Skripterstellung unter-
stützen. Alle Ereignisse, die für ein bestimmtes Objekt nicht gültig sind, werden grau darge-
stellt. Enthält ein Ereignis eine Berechnung oder ein Skript, steht neben dem Namen dieses
Ereignisses ein Sternchen (*).

Ereignisse für untergeordnete Objekte anzeigen
 Zeigt das Ereignis an, das gegenwärtig unter „Anzeigen“ für das aktuelle Objekt und alle

untergeordneten Objekte ausgewählt ist. Wenn Sie das oberste Objekt in der Palette „Hierar-
chie“ auswählen, zeigt diese Option das Ereignis an, das Sie derzeit in der Liste „Anzeigen“ für
alle Objekte auf Ihrem Formular ausgewählt haben.

Funktionen
 Zeigt eine Liste der verfügbaren integrierten FormCalc- bzw. JavaScript-Funktionen an,

je nachdem, welche Skriptsprache Sie aktuell in der Liste „Sprache“ ausgewählt haben.

Um eine Funktion in das Skript-Bearbeitungsfeld einzufügen, wählen Sie eine Funktion in der
Liste aus und drücken die Eingabetaste.

Skriptsyntax prüfen
 Prüft alle Skripten eines Formulars auf korrekte Syntax und erstellt einen in der Palette

„Bericht“ auf der Registerkarte „Warnungen“ einsehbaren Fehlerbericht.
7

Skripterstellung mit Designer 2

 8
Sprache
Legt fest, welche Skriptsprache Sie für die aktuelle Berechnung bzw. das aktuelle Skript
verwenden möchten. Die folgenden Optionen stehen zur Auswahl:

• FormCalc FormCalc ist eine anwendungseigene Adobe-Berechnungssprache, die
gewöhnlich für kürzere Skripten wie etwa einfache Berechnungen verwendet wird.

• JavaScript JavaScript ist die Standard-Skriptsprache für neue Formulare. (Siehe So legen
Sie die Standard-Skriptsprache für neue Formulare fest lautete.)

Die in der Liste „Sprache“ angezeigte Skriptsprache stimmt mit der Skriptsprache überein,
die Sie im Dialogfeld „Optionen“ im Bereich „Arbeitsbereich“ als Standardsprache für neue
Formulare ausgewählt haben. Wenn Sie jedoch im Dialogfeld „Formulareigenschaften“ auf
der Registerkarte „Standard“ die Einstellung für die Skriptsprache für das aktuelle Formular
ändern, wird diese Änderung in die Liste „Sprache“ übernommen und für alle neuen Skripten
in Verbindung mit neuen Ereignissen verwendet. Die Änderung der Option für die Skript-
sprache im Dialogfeld „Formulareigenschaften“ hat keine Änderung der Skriptsprache für
vorhandene Skripten zur Folge. Wenn ein Ereignis bereits Skript enthält und dieses Skript
gelöscht wird, verwendet der Skript-Editor für die Dauer der Designer-Sitzung weiterhin
dieselbe Skriptsprache.

Ausführen am
Gibt an, wo die Berechnung bzw. das Skript ausgeführt werden soll. Es stehen drei Optionen
zur Auswahl:

• Client Berechnungen und Skripte werden ausgeführt, während die Client-Anwendung
(z. B. Acrobat, Adobe® Reader®oder ein Webbrowser) das Formular verarbeitet.

• Server Berechnungen und Skripte werden ausgeführt, während das Formular in der
entsprechenden Serveranwendung (z. B. Forms Generator) verarbeitet wird.

• Client und Server -Berechnungen und Skripten werden ausgeführt, während während
das Formular in der entsprechenden Serveranwendung (z. B. Forms) verarbeitet wird,
es sei denn, die HTML-Client-Anwendung unterstützt clientseitige Skripterstellung.
Beispiel: Ein Skript, das auf eine Datenbank zugreift, um automatisch Daten in das
Formular einzutragen.

Skripterstellung mit Designer
Ereignisübertragung
Um das Kontrollkästchen „Ereignisübertragung“ anzuzeigen, gehen Sie zu „Extras“ >
„Optionen“ und aktivieren Sie auf der Registerkarte „Arbeitsbereich“ das Kontrollkästchen
zur Anzeige der Option für die Ereignisübertragung.

Durch Aktivierung der Ereignisübertragung im Skript-Editor werden die Skripte global.
Mithilfe der Einstellung werden Formularereignisse an vorherige Container weitergeleitet.
Die Ereignisübertragung kann die Anzahl der Skripte in einem Formular reduzieren. Sie
können beispielsweise ein globales Skript zum Steuern der Anzeige von ungültigen Feldern,
Teilformularen oder Ausschlussgruppen erstellen. Hier sind einige Beispiele für globale
Ereignisse:

• Ein Ereignis „enter/exit/mouseEnter/mouseExit“, das das aktive Feld farblich darstellt.

• Ein change-Ereignis, das Tastenanschläge für eine Formularsitzung verfolgt.
9

Konfigurieren von Designer für die Skripterstellung 3
3. Konfigurieren von Designer für die
Skripterstellung
 10
3.1. So zeigen Sie den Skript-Editor an
1) Wählen Sie „Fenster“ > „Skript-Editor“.

HINWEIS: Wird der Skript-Editor im Designer-Arbeitsbereich angezeigt, können Sie ihn mit Hilfe
der Schaltfläche „Erweitern“ schnell andocken oder lösen.
3.2. So wechseln Sie von der einzeiligen zur mehrzeiligen
Ansicht
1) Ziehen Sie die Palettenleiste des Skript-Editors, bis die Palette die erforderliche Größe hat.

HINWEIS: Die mehrzeilige Ansicht erweitert die Liste „Anzeigen“ um die Optionen „Alle
Ereignisse“ und „Ereignisse mit Skripten“. Die Option „Alle Ereignisse“ zeigt alle Ereignisse für
ein bestimmtes Formularentwurfsobjekt an, und zwar auch dann, wenn die Ereignisse keine
Berechnungen oder Skripten enthalten. Die Option „Ereignisse mit Skripten“ zeigt nur diejenigen
Ereignisse eines bestimmten Objekts an, die Berechnungen oder Skripten enthalten.
3.3. So legen Sie die Standard-Skriptsprache für neue
Formulare fest
1) Wählen Sie „Extras“ > „Optionen“.

2) Klicken Sie auf „Arbeitsbereich“.

3) Wählen Sie in der Liste „Standardsprache für neue Formulare“ die Standard-Skriptsprache für
neue Formulare aus.

Konfigurieren von Designer für die Skripterstellung
3.4. So legen Sie die Standard-Skriptsprache für das aktuelle
Formular fest
1) Wählen Sie Datei > Formulareigenschaften.

2) Klicken Sie auf die Registerkarte „Standard“.

3) Wählen Sie in der Liste „Standardsprache“ die Standard-Skriptsprache für das aktuell
angezeigte Formular aus.
3.5. So legen Sie die Standard-Skriptsprache für das aktuelle
Formular fest
1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.

2) Klicken Sie auf die Registerkarte „Standard“.

3) Wählen Sie in der Liste „Standardsprache“ die Standard-Skriptsprache für das aktuell
angezeigte Formular aus.
3.6. So legen Sie die Standard-Skriptsprache für eine Formu-
larvorlage fest
1) Erstellen Sie einen neuen Formularentwurf.

2) Wählen Sie Datei > Formulareigenschaften.

3) Klicken Sie auf die Registerkarte „Standard“.

4) Wählen Sie in der Liste „Standardsprache“ die standardmäßige Sprache für die Skripterstel-
lung aus.

5) Erstellen Sie eine Sicherungskopie der ursprünglichen Vorlagendatei im Ordner „Templates“,
der sich im Installationsverzeichnis von Designer befindet.

6) Speichern Sie den neuen Formularentwurf als TDS-Datei und überschreiben Sie die dazuge-
hörige Formularvorlage. Beispiel: Speichern Sie die Datei unter dem Namen „Letter.tds“ und
überschreiben Sie die Datei „Letter.tds“ im Ordner „Templates\Blank“.
11

Konfigurieren von Designer für die Skripterstellung 3
3.7. So legen Sie die Standard-Skriptsprache für eine
Formularvorlage fest
 12
1) Erstellen Sie einen neuen Formularentwurf.

2) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.

3) Klicken Sie auf die Registerkarte „Standard“.

4) Wählen Sie in der Liste „Standardsprache“ die standardmäßige Sprache für die Skripterstel-
lung aus.

5) Erstellen Sie eine Sicherungskopie der ursprünglichen Vorlagendatei im Ordner „Templates“,
der sich im Installationsverzeichnis von Designer befindet.

6) Speichern Sie den neuen Formularentwurf als TDS-Datei und überschreiben Sie die dazuge-
hörige Formularvorlage. Beispiel: Speichern Sie die Datei unter dem Namen „Letter.tds“ und
überschreiben Sie die Datei „Letter.tds“ im Ordner „Templates\Blank“.
3.8. So legen Sie die Standard-Anwendung für die
Verarbeitung fest
1) Wählen Sie Datei > Formulareigenschaften.

2) Klicken Sie auf die Registerkarte „Standard“.

3) Wählen Sie aus der Liste „Standardausführung am“ die gewünschte Standardanwendung für
die Verarbeitung.

HINWEIS: Durch diesen Vorgang wird der Wert der Standardanwendung für die Verarbeitung
nur für die aktuelle Instanz des Formulars festgelegt.

Damit Sie die Standardanwendung für die Verarbeitung beim Erstellen eines Formulars nicht
immer neu festlegen müssen, ändern Sie die zugehörige Vorlagendatei, die zum Erstellen von
neuen Formularentwürfen verwendet wird.

Konfigurieren von Designer für die Skripterstellung
3.9. So legen Sie die Standard-Anwendung für die
Verarbeitung fest
1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.

2) Klicken Sie auf die Registerkarte „Standard“.

3) Wählen Sie aus der Liste „Standardausführung am“ die gewünschte Standardanwendung für
die Verarbeitung.

HINWEIS: Durch diesen Vorgang wird der Wert der Standardanwendung für die Verarbeitung
nur für die aktuelle Instanz des Formulars festgelegt.

Damit Sie die Standardanwendung für die Verarbeitung beim Erstellen eines Formulars nicht
immer neu festlegen müssen, ändern Sie die zugehörige Vorlagendatei, die zum Erstellen von
neuen Formularentwürfen verwendet wird.
13

Konfigurieren von Designer für die Skripterstellung 3
3.10. So ändern Sie die Standardanwendung für die
Verarbeitung für eine Formularvorlage
 14
1) Erstellen Sie einen neuen Formularentwurf.

2) Wählen Sie Datei > Formulareigenschaften.

3) Klicken Sie auf die Registerkarte „Standard“.

4) Wählen Sie aus der Liste „Standardausführung am“ die gewünschte Standardanwendung für
die Verarbeitung.

5) Erstellen Sie eine Sicherungskopie der ursprünglichen Vorlagendatei im Ordner „Templates“,
der sich im Installationsverzeichnis von Designer befindet.

6) Speichern Sie den neuen Formularentwurf als TDS-Datei und überschreiben Sie die dazuge-
hörige Formularvorlage. Beispiel: Speichern Sie die Datei unter dem Namen „Letter.tds“ und
überschreiben Sie die Datei „Letter.tds“ im Ordner „Templates\Blank“.
3.11. So ändern Sie die Standardanwendung für die
Verarbeitung für eine Formularvorlage
1) Erstellen Sie einen neuen Formularentwurf.

2) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.

3) Klicken Sie auf die Registerkarte „Standard“.

4) Wählen Sie aus der Liste „Standardausführung am“ die gewünschte Standardanwendung für
die Verarbeitung.

5) Erstellen Sie eine Sicherungskopie der ursprünglichen Vorlagendatei im Ordner „Templates“,
der sich im Installationsverzeichnis von Designer befindet.

6) Speichern Sie den neuen Formularentwurf als TDS-Datei und überschreiben Sie die dazuge-
hörige Formularvorlage. Beispiel: Speichern Sie die Datei unter dem Namen „Letter.tds“ und
überschreiben Sie die Datei „Letter.tds“ im Ordner „Templates\Blank“.

Konfigurieren von Designer für die Skripterstellung
3.12. So zeigen Sie arabische, hebräische, thailändische und
vietnamesische Zeichen an
Zum Anzeigen von Zeichen in Arabisch, Hebräisch, Thai oder Vietnamesisch im Skript-Editor oder
auf der Registerkarte „XML-Quelle“ müssen Sie die Schrifteinstellungen ändern, die Designer auf
diesen Registerkarten verwendet. Andernfalls werden an Stelle der landesspezifischen Zeichen in
Designer nur kleine Kästchen angezeigt.

1) Wählen Sie „Extras“ > „Optionen“ und dann links im Fenster den Eintrag „Arbeitsbereich“.

2) Wählen Sie eine der folgenden Optionen aus:

• „FormCalc-Syntaxformatierung“, um die Schrift im Skript-Editor festzulegen, wenn
FormCalc verwendet wird

• „JavaScript-Syntaxformatierung“, um die Schrift im Skript-Editor festzulegen, wenn
JavaScript verwendet wird

• „Syntaxformatierung der XML-Quelle“, um die Schrift auf der Registerkarte
„XML-Quelle“ festzulegen

3) Wählen Sie unter „Schrift“ eine Schrift aus, die Ihre Sprache unterstützt. Adobe Arabic unter-
stützt beispielsweise Arabisch, Adobe Hebrew unterstützt Hebräisch, Adobe Thai unterstützt
Thai und Myriad® Pro und Minion® Pro unterstützt Vietnamesisch. Falls die erforderlichen
Schriften noch nicht auf dem System installiert sind, können Sie sie aus dem Internet herun-
terladen.

4) Klicken Sie auf OK.

5) Klicken Sie auf „OK“, um das Dialogfeld „Optionen“ zu schließen.
3.13. Berechnungen und Skripten mit dem Arbeitsbereich
debuggen
Zum Debugging von Berechnungen und Skripten stehen im Designer-Arbeitsbereich verschiedene
Möglichkeiten zur Auswahl.

Die folgende Tabelle zeigt, wo Sie nützliche Debugging-Informationen in den verschiedenen
Designer-Paletten und -Registerkarten finden und wie Sie diese nutzen können.
15

Konfigurieren von Designer für die Skripterstellung 3

 16
Arbeitsbereich Zweck

Registerkarte „Warnungen“
der Palette „Bericht“

Zeigt Ziel und Warnmeldungen sowie Syntaxfehler für JavaScript oder FormCalc bei
Verwendung des Befehls „Skriptsyntax prüfen“ über das Menü „Extras“ oder durch
Klicken auf die Schaltfläche „Skriptsyntax prüfen“ in der Werkzeugleiste an. Weitere
Informationen unter So prüfen Sie die Skriptsyntaxändern.
Durch Doppelklicken auf eine Syntaxwarnung auf der Registerkarte „Warnungen“
wird das fehlerhafte Skript in den Skript-Editor geladen und die Zeile mit dem
Fehler hervorgehoben.
Durch Doppelklicken auf eine Warnmeldung wird das entsprechende Objekt in der
Designansicht und auf der Palette „Hierarchie“ markiert. Durch anschließendes
Drücken der Taste F1 erhalten Sie Informationen zum Beheben des jeweiligen
Problems.
Eine Prüfung auf JavaScript-Laufzeitfehler können Sie duch Aktivieren der
JavaScript-Konsole durchführen. Weitere Informationen unter
JavaScript-Debuggingändern.

Registerkarte „Bindung“ der
Palette „Bericht“

Wenn ein Formularentwurf an eine Datenquelle gebundene Felder enthält, können
Sie mit Hilfe der Registerkarte „Bindungen“ abhängig von der definierten
Datenbindung Felderlisten anzeigen. Auf diese Weise können Sie z. B. nur Felder
mit globaler Datenbindung oder nur Felder ohne definierte Datenbindung anzeigen.
Dies ist vor allem bei Formularen mit einer großen Anzahl von Feldern mit
Datenbindungen nützlich.

Registerkarte „Protokoll“ der
Palette „Bericht“

Auf dieser Registerkarte werden Prüfungsmeldungen, Skriptausführungsfehler für
JavaScript oder FormCalc sowie beim Importieren oder Speichern von Formularen
oder bei Verwendung der Registerkarte „PDF-Vorschau“ von Designer erstellte
Wiedergabefehler angezeigt.

„Hierarchie“, Palette Mit der Palette „Hierarchie“ können Sie die Position eines Formularobjekts für eine
Referenz-Syntax ermitteln. Bei der Palette „Hierarchie“ handelt es sich um eine
grafische Darstellung der Struktur eines Formulars. Sie zeigt die Inhalte der
Registerkarten „Masterseiten“ und „Designansicht“ an.
In der Palette „Hierarchie“ werden auch referenzierte Objekte unter der Node
„Referenzierte Objekte“ angezeigt. A Referenzobjekt ist ein Objekt, das nur bei
Bedarf einem Formular hinzugefügt wird. Immer, wenn Daten über mehrere Seiten
oder Inhaltsbereiche fließen, werden die Teilformulare für den Überlaufkopfbereich
und den Überlauffußbereich an den entsprechenden Stellen in das Formular
eingefügt.

Registerkarte „Bindung“ der
Palette „Objekt“

Für jedes Designer-Objekt, das an eine Datenquelle gebunden werden kann, gibt es
in der Palette „Objekt“ eine Registerkarte „Bindung“. Wenn Sie ein Objekt in Ihrem
Formularentwurf an eine bestimmte Daten-Node aus Ihrer Datenverbindung
binden, wird in der Liste „Datenbindung (Öffnen, Speichern, Absenden)“ eine
gültige FormCalc-Referenzsyntax für den Zugriff auf diese Daten-Node angezeigt.
Die FormCalc-Referenz-Syntax lässt sich auch zum Testen für andere Berechnungen
oder Skripten verwenden.

Konfigurieren von Designer für die Skripterstellung
Zum Debugging von Berechnungen und Skripten kann es außerdem hilfreich sein, die Standardop-
tionen für den Skript-Editor zu ändern. Diese Optionen finden Sie im Dialogfeld „Optionen“ im
Bereich „Arbeitsbereich“. Wählen Sie „Extras“ > „Optionen“ und anschließend links in der Liste den
Eintrag „Arbeitsbereich“. Sie können beispielsweise festlegen, dass Zeilennummern im
Skript-Editor angezeigt werden. Außerdem können Sie die Formatierung der FormCalc- oder Java-
Script-Syntax ändern.

XML-Quelle, Registerkarte Die Registerkarte „XML-Quelle“ enthält den XML-Code des Formularentwurfs.
Der XML-Quellcode definiert alle Aspekte des Formulars. Auf der Registerkarte
„XML-Quelle“ können Sie sich die XML-Formobjektmodellstruktur eines
Formularentwurfs sowie die Beziehungen zwischen Objekten und Eigenschaften
genauer ansehen. In der XML-Quelle entsprechen die XML-Elementnamen den
Objektnamen im XML Form Object Model und die Attribute entsprechen
Eigenschaften.
Wenn Sie in der Palette „Hierarchie“ ein Objekt auswählen und dann auf die
Registerkarte „XML-Quelle“ klicken, wird die erste Zeile des entsprechenden
Elements hervorgehoben. Der Objektname in Designer, wie in der Palette
„Hierarchie“ wird zum Wert des name Attributs in der XML-Quelle.
In dem über „Extras“ > „Optionen“ aufgerufenen Dialogfeld stehen verschiedene
Optionen zur Anzeige der Quelle auf der Registerkarte „XML-Quelle“ zur Auswahl.
Dazu gehören beispielsweise das Ein- oder Ausblenden der Zeilennummern und die
Einstellung der Syntaxfarbe.
XML-Quellcode sollte nicht direkt bearbeitet werden.

Arbeitsbereich Zweck
17

Berechnungen und Skripten erstellen 4
4. Berechnungen und Skripten erstellen
 18
Designer bietet für das Erstellen von Berechnungen und Skripten eine Vielzahl von Funktionen,
mit deren Hilfe sich zahlreiche Aufgaben ausführen lassen. Das folgende Skript ändert beispielsweise
die Farbe eines Textfeldrandes und die Schriftgröße des Textfeldwertes:

TextField1.border.edge.color.value = "255,0,0";
TextField1.font.typeface = "Courier New";

Komplexere Formulare können mit Hilfe von Skripten zur Laufzeit Datenquellverbindungen
vornehmen und Daten bearbeiten. Beispiele für gängige Aufgaben bei der Skripterstellung finden
Sie unter Beispiele für gängige Aufgaben bei der Skripterstellungändern.

Für das Erstellen von Berechnungen und Skripten in Designer gibt es einen allgemeinen Prozess,
der jedes Mal ausgeführt werden muss, wenn Sie eine Berechnung oder ein Skript an ein Objekt
anhängen. Nicht alle Teile dieses Prozesses sind jedes Mal erforderlich, wenn Sie eine Berechnung
oder ein Skript erstellen. Dennoch ist es empfehlenswert, diesen Prozess umzusetzen, um potenzielle
Fehler und unerwartete Ergebnisse zu vermeiden.

Beim Erstellen einer Berechnung oder eines Skripts müssen generell die folgenden Schritte ausge-
führt werden:

• Wählen Sie das Objekt aus, an das Sie eine Berechnung oder ein Skript anhängen möchten.
Sie können zwar Berechnungen und Skripten erstellen, mit denen fast jedes Objekt im Formu-
larentwurf bearbeitet werden kann, jedoch werden Formularereignisse nicht von allen
Objekten des Formularentwurfs unterstützt. Eine Liste mit den Standardobjekten, die sich
in der Palette „Objektbibliothek“ in Designer befindet, die die Skripterstellung unterstützen,
finden Sie unter Objekte, die Berechnungen und Skripte unterstützen.

• Erstellen Sie die Berechnung bzw. das Skript im Skript-Bearbeitungsfeld des Skript-Editors.

• Unterziehen Sie die Berechnung oder das Skript entweder auf der Registerkarte
„PDF-Vorschau“ oder in Ihrer Testumgebung einer gründlichen Überprüfung.
4.1. Namenskonventionen für Formularentwurfsobjekte
und Variablen
Wenn Sie Berechnungen oder Skripten erstellen, um ein Formular anspruchsvoller zu gestalten,
müssen Sie die im Formular verwendeten Namen für das Formularentwurfsobjekt und die Varia-
blen sorgfältig auswählen. Die Namen von XML Form Object Model-Eigenschaften, -Methoden
und -Objekten sollten nach Möglichkeit nicht für Formularentwurfsobjekte und Variablen
verwendet werden. Andernfalls werden Berechnungen und Skripten möglicherweise nicht
ordnungsgemäß ausgeführt.

Berechnungen und Skripten erstellen
Wenn Sie beispielsweise ein neues Textfeld mit dem Namen x in einem Teilformularobjekt mit dem
Namen Subform1 erstellen, greifen Sie auf das Textfeldobjekt mit Hilfe der folgenden Syntax zu:

Subform1.x.[Ausdruck]

Teilformularobjekte besitzen jedoch bereits eine XML-Formobjektmodell-Eigenschaft mit dem
Namen x, das die horizontale Position des Teilformulars im Formularentwurf darstellt.

Um Namenskonflikte zu vermeiden, müssen Sie Feldbenennungskonventionen auswählen, die sich
von denen des XML-Formularobjektmodells unterscheiden. Sie können folgende Feldnamen für das
Textfeld in dem Beispiel oben verwenden:

• horizontalValue

• x_value

• xLetter

• hValue

Weitere Informationen sowie eine Liste mit den Namen der Eigenschaften, Methoden und Objekten
für das XML-Formobjektmodell finden Sie unter Skriptreferenz.

VERKNPFTE LINKS:
Variablen benennen
Berechnungen und Skripten erstellen
4.2. Skriptsprache wählen
Designer unterstützt die Skripterstellung sowohl mit FormCalc als auch mit JavaScript. Jede Skript-
sprache bietet ihre eigenen Vorteile, die Sie kennen sollten, bevor Sie mit der Erstellung von Skripten
für Ihr Formular beginnen.

FormCalc ist eine Berechnungssprache mit einer umfangreichen Palette von integrierten Funkti-
onen zur Vereinfachung der gebräuchlichsten Formularfunktionen. Beispielsweise können Sie mit
den Finanzfunktionen von FormCalc anhand des Kreditbetrags, des Zinssatzes und der Anzahl der
Zahlungsperioden die Höhe der pro Periode fälligen Zahlungsbeträge berechnen.

JavaScript ist eine leistungsstärkere und vielseitigere Skriptsprache, die Ihnen mehr Flexibilität bietet
und die Möglichkeit eröffnet, Ihre bereits vorhandenen Skripterstellungskenntnisse zu nutzen.
Beispielsweise können Sie vorhandene JavaScript-Funktionen in Designer wiederverwerten und
sich so die Arbeit bei der Skripterstellung etwas erleichtern.

HINWEIS: Designer unterstützt JavaScript, Version 1.6 und älter.

Sie können die für neue Formulare verwendete Skriptsprache im Bereich „Arbeitsbereich“ des
Dialogfelds „Optionen“ auswählen. Wählen Sie die Skriptsprache für das aktuelle Formular auf der
Registerkarte „Standard“ des Dialogfelds „Formulareigenschaften“ aus.
19

http://www.adobe.com/go/learn_aemforms_scriptingReference_62

Berechnungen und Skripten erstellen 4

 20
Die in der Liste „Sprache“ im Skript-Editor angezeigte Skriptsprache stimmt mit der Skriptsprache
überein, die Sie als Standardsprache für neue Formulare ausgewählt haben. Wenn Sie jedoch die
Einstellung für die Skriptsprache für das aktuelle Formular ändern, wird diese Änderung in die Liste
„Sprache“ übernommen und für alle neuen Skripten in Verbindung mit neuen Ereignissen
verwendet. Die Änderung der Option für die Skriptsprache im Dialogfeld „Formulareigenschaften“
hat keine Änderung der Skriptsprache für vorhandene Skripten zur Folge. Wenn ein Ereignis bereits
Skript enthält und dieses Skript gelöscht wird, verwendet der Skript-Editor für die Dauer der Desi-
gner-Sitzung weiterhin dieselbe Skriptsprache.

HINWEIS: Ab dem 10. März 2012 stellt Adobe die Unterstützung der Leitfaden-Funktion in Adobe®
LiveCycle® ES ein. Die Guides-Funktion steht dann nur noch im Rahmen von Produkt-Upgrades zur
Verfügung und wird nach den nächsten zwei Hauptversionen vollständig entfernt.

In der folgenden Tabelle sind einige der Hauptunterschiede zwischen FormCalc und JavaScript
zusammengestellt.

VERKNPFTE LINKS:
FormCalc verwenden
JavaScript verwenden
JavaScript-Funktionen erstellen und wiederverwenden

FormCalc JavaScript

Programmeigene Berechnungssprache von Adobe,
gültig in Designer und Forms

Standard-Skriptsprache, kommt in zahlreichen
verbreiteten Software-Anwendungen zum Einsatz

Kürzere Skripten (üblicherweise nur eine Zeile)
Unterstützt Skriptschleifen

Möglichkeit, bei Bedarf längere Skripten mit
Schleifenlogik zu verwenden

In Formularleitfäden nicht unterstützt (veraltet) In Formularleitfäden unterstützt (veraltet)

Enthält eine Vielzahl von nützlichen integrierten
Funktionen, durch die für allgemeine Aufgaben beim
Formularentwurf weniger Skripterstellungsaufwand
erforderlich ist

Bietet Zugriff auf das Acrobat-Objektmodell und die
JavaScript-Funktionalität von Acrobat

Unterstützung für internationale Datums-, Uhrzeit-,
Währungs- und Zahlenformate

Debugging mit dem JavaScript-Debugger in Acrobat
möglich

Integrierte URL-Funktionen für Post, Put und Get
ermöglichen webbasierte Interaktion

Erstellung benutzerdefinierter Funktionen für Ihre
spezifischen Anforderungen

Kompatibel mit allen Plattformen, die von Designer und
Forms unterstützt werden

Kompatibel mit allen Plattformen, die von Designer und
Forms unterstützt werden

Berechnungen und Skripten erstellen
4.3. So erstellen Sie eine Berechnung oder ein Skript
1) Wählen Sie im Formularentwurf ein Objekt aus, das Ereignisse unterstützt. Fügen Sie einem
neuen, leeren Formular eine Schaltfläche hinzu.

2) Wählen Sie im Skript-Editor aus der Liste „Anzeigen“ eines der Ereignisse aus, die für das
betreffende Objekt gültig sind. Das gewählte Ereignis bestimmt, wann das Skript ausgeführt
wird. Wenn Sie eine Berechnung oder ein Skript erstellen, die/das sich auf ein Objekt auswirkt,
das keine Ereignisse unterstützt, müssen Sie Ihre Berechnung bzw. Ihr Skript einem Formu-
larentwurfsobjekt hinzufügen, das Formularereignisse unterstützt. Wählen Sie für das neue
Schaltflächenobjekt beispielsweise das click -Ereignis in der Liste „Anzeigen“.

3) Wählen Sie in der Liste „Sprache“ eine Skriptsprache aus. Wählen Sie für das neue Schaltflä-
chenobjekt „JavaScript“ aus.

4) Wählen Sie in der Liste "Ausführen am", wo das Skript ausgeführt werden soll. Wählen Sie für
das neue Schaltflächenobjekt beispielsweise "Client".

Zur Auswahl stehen die clientbasierte Anwendung (z. B. Acrobat oder ein Webbrowser) und
der serverbasierte Prozess.

Wenn „Client“ festgelegt wurde, wird die Verarbeitung von Berechnungen und Skripten erst
nach der Wiedergabe des Formulars ausgelöst. Wenn „Server“ festgelegt wurde, erfolgt die
Verarbeitung von Berechnungen und Skripten bereits während des Wiedergabevorgangs.
Durch die Anzeige des Formulars in der Vorschau mit Hilfe der Registerkarte „PDF-Vorschau“
wird das Öffnen des Formulars in Acrobat simuliert. Daher werden Skripten ausgeführt, für
die die Ausführung auf dem Client bzw. auf dem Client und dem Server festgelegt wurde.

HINWEIS: Wenn Sie in der Liste „Ausführen am“ die Option „Client und Server“ wählen, wird
das Skript entweder in der Client- oder in der Serveranwendung ausgeführt. Dies ist davon
abhängig, welche Anwendung zur Verarbeitung des Formulars verwendet wird.

5) Geben Sie in das Feld "Skriptquelle" eine FormCalc-Berechnung bzw. ein JavaScript-Skript ein.
Mit Hilfe der Anweisungsende-Funktionalität von Designer können Sie Referenz-Syntaxen für
eine Berechnung oder ein Skript erstellen. Fügen Sie beispielsweise das folgende Java-
Script-Skript zum neuen Schaltflächenobjekt hinzu:

xfa.host.messageBox("Hello World!", "Creating a new
script", 3);

6) Nach Fertigstellung des Formularentwurfs sollten Sie Ihre Berechnungen und Skripten vor
dem eigentlichen Einsatz prüfen. Beispielsweise können Sie sich das neue Schaltflächenobjekt
in der PDF-Version des Formulars auf der Registerkarte "PDF-Vorschau" ansehen. Klicken Sie
auf das Schaltflächenobjekt, um die in Schritt 5 angegebene Meldung anzuzeigen.

Weitere Informationen über die Designer-Objekte, die Skripterstellung unterstützen, finden
Sie unter Objekte, die Berechnungen und Skripte unterstützen.
21

Berechnungen und Skripten erstellen 4
4.4. So erstellen Sie eine Berechnung oder ein Skript
 22
1) Wählen Sie im Formularentwurf ein Objekt aus, das Ereignisse unterstützt. Fügen Sie einem
neuen, leeren Formular eine Schaltfläche hinzu.

2) Wählen Sie im Skript-Editor aus der Liste „Anzeigen“ eines der Ereignisse aus, die für das
betreffende Objekt gültig sind. Das gewählte Ereignis bestimmt, wann das Skript ausgeführt
wird. Wenn Sie eine Berechnung oder ein Skript erstellen, die/das sich auf ein Objekt auswirkt,
das keine Ereignisse unterstützt, müssen Sie Ihre Berechnung bzw. Ihr Skript einem Formu-
larentwurfsobjekt hinzufügen, das Formularereignisse unterstützt. Wählen Sie für das neue
Schaltflächenobjekt beispielsweise das click -Ereignis in der Liste „Anzeigen“.

3) Wählen Sie in der Liste „Sprache“ eine Skriptsprache aus. Wählen Sie für das neue Schaltflä-
chenobjekt „JavaScript“ aus.

4) Wählen Sie in der Liste "Ausführen am", wo das Skript ausgeführt werden soll. Wählen Sie für
das neue Schaltflächenobjekt beispielsweise "Client".

Zur Auswahl stehen die clientbasierte Anwendung (z. B. Acrobat oder ein Webbrowser) und
der serverbasierte Prozess (z. B. Adobe Document Services).

Wenn „Client“ festgelegt wurde, wird die Verarbeitung von Berechnungen und Skripten erst
nach der Wiedergabe des Formulars ausgelöst. Wenn „Server“ festgelegt wurde, erfolgt die
Verarbeitung von Berechnungen und Skripten bereits während des Wiedergabevorgangs.
Durch die Anzeige des Formulars in der Vorschau mit Hilfe der Registerkarte
„PDF-Vorschau“ wird das Öffnen des Formulars in Acrobat simuliert. Daher werden Skripten
ausgeführt, für die die Ausführung auf dem Client bzw. auf dem Client und dem Server festge-
legt wurde.

HINWEIS: Wenn Sie in der Liste „Ausführen am“ die Option „Client und Server“ wählen, wird
das Skript entweder in der Client- oder in der Serveranwendung ausgeführt. Dies ist davon
abhängig, welche Anwendung zur Verarbeitung des Formulars verwendet wird.

5) Geben Sie in das Feld "Skriptquelle" eine FormCalc-Berechnung bzw. ein JavaScript-Skript ein.
Mit Hilfe der Anweisungsende-Funktionalität von Designer können Sie Referenz-Syntaxen für
eine Berechnung oder ein Skript erstellen. Fügen Sie beispielsweise das folgende Java-
Script-Skript zum neuen Schaltflächenobjekt hinzu:

xfa.host.messageBox("Hello World!", "Creating a new
script", 3);

6) Nach Fertigstellung des Formularentwurfs sollten Sie Ihre Berechnungen und Skripten vor
dem eigentlichen Einsatz prüfen. Beispielsweise können Sie sich das neue Schaltflächenobjekt
in der PDF-Version des Formulars auf der Registerkarte "PDF-Vorschau" ansehen. Klicken Sie
auf das Schaltflächenobjekt, um die in Schritt 5 angegebene Meldung anzuzeigen.

Weitere Informationen über die Designer-Objekte, die Skripterstellung unterstützen, finden
Sie unter Objekte, die Berechnungen und Skripte unterstützen.

Berechnungen und Skripten erstellen
VERKNPFTE LINKS:
FormCalc verwenden
JavaScript verwenden
Ereignisse
So erstellen Sie Berechnungen und Skripten mit dem Anweisungsende
Festlegen, wann eine Berechnung oder ein Skript ausgeführt werden soll
So zeigen Sie Skriptereignisse und Skripten an
Festlegen, wo eine Berechnung oder ein Skript ausgeführt werden soll
Berechnungen und Skripten testen und debuggen
4.5. So suchen Sie nach Text oder anderen Objekten
Auf der Registerkarte "XML-Quelle" oder im Skript-Editor können Sie schnell nach jedem Exemplar
eines Wortes oder Ausdrucks suchen.

1) Wählen Sie auf der Registerkarte „XML-Quelle“ oder im Skript-Editor den Befehl „Bear-
beiten“ > „Suchen“ oder klicken Sie mit der rechten Maustaste, um das Kontextmenü aufzu-
rufen.

2) Geben Sie im Feld „Suchen nach“ den zu suchenden Text ein.

3) Wählen Sie nach Wunsch andere Optionen aus.

4) Klicken Sie auf „Weitersuchen“.

Zum Abbrechen eines laufenden Suchvorgangs drücken Sie die Esc-Taste oder klicken auf die
Schaltfläche "Abbrechen".

WICHTIG: Sie können den XML-Quellcode zwar direkt auf der Registerkarte „XML-Quelle“
bearbeiten, jedoch wird empfohlen, nur dann Änderungen am Quellcode vorzunehmen, wenn
Sie mit der Adobe-XML-Formulararchitektur vertraut sind. Weitere Informationen zur
XML-Form-Architektur erhalten Sie im Developer Center.

VERKNPFTE LINKS:
Berechnungen und Skripten erstellen
So erstellen Sie eine Berechnung oder ein Skript

So ersetzen Sie Text oder andere Objekte
So erstellen Sie Berechnungen und Skripten mit dem Anweisungsende
Festlegen, wann eine Berechnung oder ein Skript ausgeführt werden soll
So zeigen Sie Skriptereignisse und Skripten an
Festlegen, wo eine Berechnung oder ein Skript ausgeführt werden soll
Berechnungen und Skripten testen und debuggen
23

http://www.adobe.com/devnet/livecycle.html
file:////XML/en-us/Products/AEMForms/6.1/DesignerScriptingBasics/lc_de_sb_create_calcs_scripts_cc.xml#WS92d06802c76abadb6d242c01129f6916fba-7ff8.2_ver10.5

Berechnungen und Skripten erstellen 4
4.6. So ersetzen Sie Text oder andere Objekte
 24
Text kann automatisch ersetzt werden. Sie können beispielsweise Corp. durch Corporation ersetzen.

1) Wählen Sie im Skript-Editor „Bearbeiten“ > „Ersetzen“.

2) Geben Sie im Feld „Suchen nach“ den zu suchenden Text ein.

3) Geben Sie im Feld „Ersetzen durch“ den Ersatztext ein.

4) Wählen Sie nach Wunsch andere Optionen aus.

5) Klicken Sie auf „Weitersuchen“, „Ersetzen“ oder „Alle ersetzen“.

6) Zum Abbrechen eines laufenden Suchvorgangs drücken Sie die Esc-Taste oder klicken auf die
Schaltfläche "Abbrechen".

Zum Ersetzen von Text in Skripten, die an mehrere Objekte im Formular angehängt sind,
wählen Sie das Stammteilformular Ihres Formulars (Standard: form1) und anschließend
„Ereignisse für untergeordnete Objekte anzeigen“ aus. Führen Sie dann den oben beschrie-
benen Vorgang durch.

WICHTIG: Sie können den XML-Quellcode zwar direkt auf der Registerkarte „XML-Quelle“
bearbeiten, jedoch wird empfohlen, nur dann Änderungen am Quellcode vorzunehmen,
wenn Sie mit der Adobe-XML-Formulararchitektur vertraut sind. Weitere Informationen
zur XML-Form-Architektur erhalten Sie im Developer Center.

VERKNPFTE LINKS:
Berechnungen und Skripten erstellen
So suchen Sie nach Text oder anderen Objekten

http://www.adobe.com/devnet/livecycle.html

Berechnungen und Skripten erstellen
4.7. So erstellen Sie Berechnungen und Skripten mit dem
Anweisungsende
Die Anweisungsende-Funktion im Skript-Editor gibt Ihnen die Möglichkeit, Ihre Berechnungen
und Skripten interaktiv zu erstellen.

Wenn Sie eine Berechnung oder ein Skript erstellen, zeigt die Anweisungsende-Funktion jedes Mal,
wenn Sie einen Punkt (.) unmittelbar hinter dem Namen eines Formularobjekts oder einer Formula-
reigenschaft eingeben, eine Liste der verfügbaren Methoden und Eigenschaften an. Falls die Anwei-
sungsende-Liste nicht angezeigt wird, prüfen Sie, ob Sie den Objekt- oder Eigenschaftennamen
richtig eingegeben haben und ob sich das Objekt innerhalb des Objektbereichs befindet, in dem Sie
das Skript erstellen. Weitere Informationen zum Referenzieren von Objekten bei Berechnungen und
Skripten finden Sie unter Objekte in Berechnungen und Skripten referenzieren.

1) Geben Sie den Namen eines Formularentwurfsobjekts oder einer Eigenschaft bzw. einen
gültigen FormCalc-Kurzbefehl ein und gleich darauf einen Punkt.

2) Wählen Sie die Methode oder Eigenschaft aus, die Sie für das Formularentwurfsobjekt
anwenden möchten, und fahren Sie dann mit dem Erstellen des Skripts fort. Um die Anwei-
sungsende-Liste zu schließen, ohne eine Funktion auszuwählen, drücken Sie die Esc-Taste.

Die Liste der verfügbaren Eigenschaften des XML Form Object Model ändert sich in Abhän-
gigkeit von dem Formularentwurfsobjekt bzw. der Eigenschaft unmittelbar vor dem Punkt.

HINWEIS: Die Anweisungsende-Liste wird nur angezeigt, wenn auf Objekte, Eigenschaften und
Methoden im XML Form Object Model zugegriffen wird. Bei Standard-JavaScript-Objekten oder
-Methoden wird sie nicht angezeigt.

VERKNPFTE LINKS:
Objekteigenschaften und -werte referenzieren
4.8. So fügen Sie eine Objektreferenz-Syntax automatisch ein
Anstatt eine Objektreferenz-Syntax manuell mit der Anweisungsende-Liste zu erstellen, können Sie
mit der Funktion zum Einfügen einer Objektreferenz-Syntax Ihren Berechnungen oder Skripten
auch automatisch eine Referenz-Syntax hinzufügen. Diese Funktion gibt für das Objekt, das Sie im
Zeichnungsbereich für das Feld „Skriptquelle“ des Skript-Editors ausgewählt haben, eine abgekürzte
Referenz-Syntax ein. Berechnungen und Skripten lassen sich auf diese Weise schneller erstellen und
es ist gewährleistet, dass die Referenz-Syntax fehlerfrei ist.

1) Stellen Sie sicher, dass das Feld „Skriptquelle“ im Skript-Editor aktiv ist und dass der Cursor
dort positioniert ist, wo Sie die Objektreferenz einfügen wollen.

2) Klicken Sie im Formular bei gedrückter Strg-Taste auf das zu referenzierende Objekt. Der Cursor
nimmt die Form an, um Ihnen die Objektauswahl zu erleichtern.

VERKNPFTE LINKS:
Objekte in Berechnungen und Skripten referenzieren
25

Berechnungen und Skripten erstellen 4
4.9. Festlegen, wann eine Berechnung oder ein Skript
ausgeführt werden soll
 26
Beim Erstellen von Berechnungen und Skripten müssen Sie jeden Eintrag einem bestimmten
Formularereignis zuweisen. Jedes Formularereignis stellt eine Änderung des Formularstatus dar,
die zu einem bestimmten Zeitpunkt eintritt.

Der Formularstatus kann sich während der Formularwiedergabe auf dem Server durch Forms,
während der Formularwiedergabe auf dem Client durch Acrobat oder Adobe Reader sowie während
des Ausfüllens des Formulars durch einen Benutzer ändern.

Wenn eine Änderung des Formularstatus eintritt, werden alle mit dem Ereignis verbundenen
Berechnungen oder Skripten automatisch verarbeitet.

Das Ereignis, das Sie beim Erstellen einer Berechnung oder eines Skriptes verwenden, bestimmt in
gewissem Maß, was Sie bei der Berechnung oder im Skript berücksichtigen müssen. Beispielsweise
kann die auf einem Formular verfügbare Datenmenge und -art je nach dem gewählten Zeitpunkt des
Ereignisses anders ausfallen. Die Ergebnisse einer Berechnung oder eines Skriptes, die bzw. das den
Wert eines Feldes abruft, fallen daher möglicherweise unterschiedlich aus, je nachdem, ob sie bzw.
es ausgeführt wird, bevor oder nachdem ein Benutzer beim Ausfüllen des Formulars bestimmte
Aktionen ausführt. Weitere Informationen zu Ereignissen finden Sie unter Ereignisse.

Je nach dem erstellten Formulartyp treten einige Ereignisse möglicherweise niemals ein. Ange-
nommen, ein Formular enthält ein festes Layout und keine interaktiven Objekte. In diesem Fall
treten interaktive Ereignisse, die mit Benutzeraktionen verknüpft sind, wahrscheinlich nie ein und
die mit diesen Ereignissen verbundenen Skripten werden folglich nicht ausgeführt.

Designer unterstützt eine Vielzahl von Formularereignissen. Zahlreiche gängige Berechnungs- und
Skriptaufgaben lassen sich aber auch mit Hilfe einiger weniger Ereignisse durchführen, die bei wich-
tigen Änderungen des Formularstatus auftreten. Dazu gehören unter anderem:

docReady
Wird sofort nach dem Öffnen des Formulars in Acrobat oder Adobe Reader ausgelöst® sowie
unmittelbar bevor der Benutzer mit Formularobjekten arbeiten kann. Dieses Ereignis wird als
letztes ausgelöst, bevor der Benutzer die Steuerung des Formulars übernimmt.

enter
Wird ausgelöst, wenn ein Benutzer beim Ausfüllen den Fokus auf ein bestimmtes Feld, auf eine
Schaltfläche oder auf ein Teilformular verlagert.

exit
Wird ausgelöst, wenn ein Benutzer beim Ausfüllen den Fokus von einem bestimmten Feld,
einer Schaltfläche oder einem Teilformular auf ein anderes Objekt verlagert.

Berechnungen und Skripten erstellen
change
Wird ausgelöst, wenn ein Benutzer beim Ausfüllen einen Feldwert ändert. Dieses Ereignis wird
am häufigsten bei Dropdown-Listen oder Listenfelder verwendet; wenn ein Benutzer den
aktuellen Wert ändert, wird ein Skript ausgeführt.

click
Wird ausgelöst, wenn ein Benutzer beim Ausfüllen auf ein Feld oder eine Schaltfläche klickt.
Dieses Ereignis wird häufig mit Schaltflächen verwendet, um ein Skript auszuführen, wenn der
Benutzer beim Ausfüllen des Formulars auf die Schaltfläche klickt.

VERKNPFTE LINKS:
So zeigen Sie Skriptereignisse und Skripten an
Ereignisse
Festlegen, wo eine Berechnung oder ein Skript ausgeführt werden soll
4.10. So zeigen Sie Skriptereignisse und Skripten an
Im Skript-Editor gibt es verschiedene Möglichkeiten zur Anzeige der Skriptereignisse für Objekte
in einem Formular. Welche Möglichkeiten verfügbar sind, hängt von der Art der ausgewählten
Objekte und der Anzahl der anzuzeigenden Ereignisse ab.

Führen Sie zuerst die folgenden Schritte durch:

• Wenn der Skript-Editor nicht auf dem Bildschirm angezeigt wird, wählen Sie „Fenster“ >
„Skript-Editor“.

• Wenn der Skript-Editor zum Anzeigen von mehr als einer Zeile eines Skripts nicht ausreicht,
ziehen Sie die untere Linie des Skript-Editors nach unten, um das Anzeigefenster zu vergrößern.
4.10.1. So zeigen Sie im Skript-Editor ein Skriptereignis für ein einzelnes Objekt an
1) Wählen Sie im Formular ein Objekt aus.

2) Wählen Sie in der Liste „Anzeigen“ ein gültiges Skriptereignis aus.
4.10.2. So zeigen Sie im Skript-Editor ein Skriptereignis für ein Container-Objekt
und dessen untergeordnete Objekte an
1) Ändern Sie bei Bedarf die Größe des Skript-Editors, damit mehrere Skriptzeilen angezeigt
werden können, und vergewissern Sie sich, dass die Option „Ereignisse für untergeordnete
Objekte anzeigen“ ausgewählt ist.

2) Wählen Sie ein Container-Objekt, wie z. B. ein Teilformular, aus.
27

Berechnungen und Skripten erstellen 4

 28
3) Wählen Sie in der Liste „Anzeigen“ ein gültiges Skriptereignis aus.

Die Ereignisse werden im Skript-Bearbeitungsfeld des Skript-Editors jeweils durch die
Referenz-Syntax der einzelnen Ereignisse getrennt angezeigt. Bestimmte Ereignisse sind nur
für bestimmte Objekttypen vorgesehen. Wenn Sie ein Skriptereignis auswählen, werden im
Skript-Bearbeitungsfeld des Skript-Editors nur die gültigen Instanzen des Ereignisses
aufgeführt. Angenommen, Sie wählen ein Teilformular aus, das eine Dropdown-Liste enthält,
und das preOpen -Ereignis wählen, zeigt der Skript-Editor einen Eintrag für die
Dropdown-Liste an. Dies liegt daran, dass das preOpen -Ereignis ist nur für Dropdown-Listen
gilt. Alternativ dazu zeigt das enter -Ereignis zwei Einträge an, d. h. einen Eintrag für die
Dropdown-Liste und einen zweiten Eintrag für das Teilformular.

HINWEIS: In der Liste „Anzeigen“ steht hinter den Namen von Ereignissen, die Skripten
enthalten, jeweils ein Sternchen (*). Wenn ein Ereignis ein Skript enthält und Sie dieses Ereignis
in der Liste „Anzeigen“ auswählen, wird die Quelle im Skript-Bearbeitungsfeld des Skript-Editors
angezeigt.
4.10.3. So zeigen Sie im Skript-Editor alle Skriptereignisse für ein einzelnes
Objekt an
1) Wählen Sie im Formular ein Objekt aus.

2) Wählen Sie in der Liste „Anzeigen“ die Option „Alle Ereignisse“ aus.

Die Ereignisse werden im Skript-Bearbeitungsfeld des Skript-Editors jeweils durch die
Referenz-Syntax der einzelnen Ereignisse getrennt angezeigt.
4.10.4. So zeigen Sie im Skript-Editor alle Skriptereignisse für ein
Container-Objekt und dessen untergeordnete Objekte an
1) Ändern Sie bei Bedarf die Größe des Skript-Editors, damit mehrere Skriptzeilen angezeigt
werden können, und vergewissern Sie sich, dass die Option „Ereignisse für untergeordnete
Objekte anzeigen“ ausgewählt ist.

2) Wählen Sie ein Container-Objekt, wie z. B. ein Teilformular, aus.

3) Wählen Sie in der Liste „Anzeigen“ die Option „Alle Ereignisse“ aus.

Die Ereignisse werden im Skript-Bearbeitungsfeld des Skript-Editors jeweils durch die
Referenz-Syntax der einzelnen Ereignisse getrennt angezeigt.

Berechnungen und Skripten erstellen
4.10.5. So zeigen Sie im Skript-Editor alle Skripten für ein einzelnes Objekt an
1) Wählen Sie ein Objekt, an das Skripten angehängt sind.

2) Wählen Sie in der Liste "Anzeigen" die Option "Ereignisse mit Skripten" aus.

Die Skripten werden im Skript-Bearbeitungsfeld des Skript-Editors jeweils durch die
Referenz-Syntax der einzelnen Ereignisse getrennt angezeigt.
4.10.6. So zeigen Sie im Skript-Editor alle Skripten für ein Container-Objekt
und dessen untergeordnete Objekte an
1) Ändern Sie bei Bedarf die Größe des Skript-Editors, damit mehrere Skriptzeilen angezeigt
werden können, und vergewissern Sie sich, dass die Option „Ereignisse für untergeordnete
Objekte anzeigen“ ausgewählt ist.

2) Wählen Sie ein Container-Objekt, wie z. B. ein Teilformular, aus. Alle Ereignisse für das
Container-Objekt und dessen untergeordnete Objekte werden im Skript-Editor angezeigt.

3) Wählen Sie in der Liste „Anzeigen“ die Option „Alle Ereignisse“ aus.

Die Skripten werden im Skript-Bearbeitungsfeld des Skript-Editors jeweils durch die
Referenz-Syntax der einzelnen Ereignisse getrennt angezeigt.
4.11. Festlegen, wo eine Berechnung oder ein Skript
ausgeführt werden soll
Für jede in Designer erstellte Berechnung und jedes Skript müssen Sie die Position angeben, an der
die Berechnung bzw. das Skript ausgeführt werden soll.

Sofern Sie keine serverbasierte Verarbeitung wie Forms verwenden, müssen Sie sicherstellen, dass
alle Ihre Berechnungen und Skripten für die Ausführung auf der Client-Anwendung (z. B. auf Acrobat,
einem Webbrowser oder der Mobile Workspace-App) ausgelegt sind.

HINWEIS: FormCalc-Berechnungen und -Skripten sind nicht auf HTML-Formulare anwendbar und
werden bei der Formularausfüllung übergangen.
29

Berechnungen und Skripten erstellen 4

 30
Bei Verwendung einer serverbasierten Verarbeitung können Sie wählen, ob Berechnungen in der
Client-Anwendung oder auf dem Server ausgeführt werden sollen. Wenn Sie sich entscheiden,
Berechnungen und Skripten auf dem Server ausführen zu lassen, legen Sie damit fest, dass die
Skripten zu einem bestimmten Zeitpunkt während des Formularwiedergabeprozesses ausgeführt
werden.

Weitere Informationen unter Festlegen, wann eine Berechnung oder ein Skript ausgeführt werden
soll.

Wenn Sie in der Liste "Ausführen am" die Option "Client und Server" wählen, steht die Berechnung
bzw. das Skript sowohl client- als auch serverbasierten Anwendungen zur Verfügung. Diese Option
ist beispielsweise dann sinnvoll, wenn Sie nicht wissen, ob den Benutzern, die Ihr Formular nutzen
möchten, Client- oder Serveranwendungen zur Verfügung stehen. Die Option ist auch dann von
Nutzen, wenn sich bestimmte Formularobjekte gegenüber einer Client-Anwendung und einer
serverbasierten Anwendung unterschiedlich verhalten.

VERKNPFTE LINKS:
Ereignisse
Festlegen, wann eine Berechnung oder ein Skript ausgeführt werden soll
So zeigen Sie Skriptereignisse und Skripten an
4.12. Berechnungen und Skripten testen und debuggen
Nach dem Erstellen von Berechnungen oder Skripten und dem Testen Ihres Formulars können
Skriptfehler oder andere unerwartete Feldwerte aufgrund von Skriptfehlern auftreten.

In Designer gibt es drei grundlegende Methoden zum Testen und Debugging Ihrer Berechnungen
und Skripten:

• Mit Hilfe der Paletten im Arbeitsbereich von „Paletten“. Weitere Informationen unter
Berechnungen und Skripten mit dem Arbeitsbereich debuggen .

• Testen Ihrer Skripten mit Hilfe von JavaScript-Debugger (nur für JavaScript). Weitere
Informationen zur Verwendung des Debuggers finden Sie unter JavaScript-Debugging.

• Verwenden der Hostmodell- und Ereignismodell-Eigenschaften und -Methoden zur
Behebung der Fehler im Formular.

Mit Hilfe der Hostmodell- und Ereignismodell-Funktionalität können Sie entweder mit der
Host-Anwendung oder mit den verschiedenen Formularereignissen arbeiten. Diese Modelle
können hilfreiche Informationen zum Debugging von Berechnungen und Skripten zurückgeben.

http://www.adobe.com/go/learn_aemforms_scriptingBasics_62
http://www.adobe.com/go/learn_aemforms_scriptingBasics_62

Berechnungen und Skripten erstellen
Das folgende Skript gibt z. B. zur Laufzeit eine Meldung zurück, die den Namen des Ereignisses
angibt, auf dem das Skript platziert wurde. Das bedeutet, dass ein bestimmtes Ereignis ausgelöst
wurde:

xfa.host.messageBox(xfa.event.name) // FormCalc
xfa.host.messageBox(xfa.event.name); // JavaScript

Ein weiteres Beispiel für den Einsatz der Hostmodell- und Ereignismodell-Methoden ist das
Abrufen des Wertes eines Feldes in einem interaktiven Formular, bevor es vom Benutzer manuell
bearbeitet wird. Dadurch lässt sich feststellen, wie die Objekte in Ihrem Formularentwurf auf die
vom Benutzer eingegebenen Daten reagieren:

xfa.host.messageBox(xfa.event.prevText) // FormCalc
xfa.host.messageBox(xfa.event.prevText); // JavaScript

VERKNPFTE LINKS:
Berechnungen und Skripten mit dem Arbeitsbereich debuggen
Mit Host-Anwendungen arbeiten
Mit dem Ereignismodell arbeiten
4.13. So prüfen Sie die Skriptsyntax
Bei der Arbeit an einem Formularentwurf können Sie alle JavaScript- oder FormCalc-Skripten auf
eventuelle Syntaxfehler prüfen, um vor der Formularverteilung sicherzustellen, dass alle Formular-
funktionen einwandfrei funktionieren. Im Formular gefundene Skriptsyntaxfehler werden auf der
Registerkarte "Warnungen" der Palette "Bericht" angezeigt. Auf der Registerkarte "Warnungen" der
Palette "Bericht" wird jeder Fehler in einer separaten, nummerierten Zeile mitsamt dem Ereignis
oder dem Objektnamen und einer entsprechenden Beschreibung angegeben. Bei mehreren Ereig-
nissen beginnt die Zeilennummerierung für jedes Ereignis mit 1.

Durch Klicken auf einen Skriptfehler in der Liste wird das entsprechende Skript mit einer Markie-
rung der fehlerhaften Zeile und einer Einfügemarke am Zeilenanfang angezeigt. Skriptsyntaxfehler
werden auch beim Speichern eines Formularentwurfs oder beim Verwenden der PDF-Vorschau auf
der Registerkarte "Warnungen" angegeben.

HINWEIS: Sie können das gewünschte Ereignis auch unter Verwendung des Dialogfelds "Gehe zu Zeile"
anzeigen. Die Dropdown-Liste der Skriptereignisse enthält den Ausdruck „SOM“ (System Object
Model), wie in den Header-Zeilen angezeigt, für jedes aktuell im Skript-Editor sichtbare Ereignis.

1) Wählen Sie im Skript-Editor „Extras“ > „Skriptsyntax prüfen“.

VERKNPFTE LINKS:
FormCalc verwenden
JavaScript verwenden
Objekte, die Berechnungen und Skripte unterstützen
31

Berechnungen und Skripten erstellen 4
4.14. Sicherheitseinschränkungen umgehen
 32
Werden das sourceSet-Modell oder dessen untergeordnete Elemente von Skripten verändert, führt
dies zu einer ungültigen, nicht länger vertrauenswürdigen Formularzertifizierung. Da ein Formular
jederzeit zertifiziert werden kann, sollten unbedingt Skripttechniken verwendet werden, die nicht
zur Ungültigkeit von Zertifikaten führen.

Bei Verwendung von Skripten, mit denen Änderungen am sourceSet-Modell oder dessen unterge-
ordneten Elementen vorgenommen werden, sollten Sie mit Modellklonen anstelle von Originalmo-
dellen arbeiten. Dadurch werden ungültige Formulare bei Änderung eines Datenmodells verhindert.
Bei Formularen zum Ausführen allgemeiner Aufgaben wie die Anzeige von Datenbankeinträgen ist
die Änderung der Datenverbindungs-Nodes im sourceSet-Modell erforderlich.

Zum Klonen des sourceSet-Modells müssen Sie eine Methode für das Skript erstellen, mit der die im
sourceSet-Modell zu ändernde Datenverbindung bestimmt wird. Stellen Sie zudem sicher, dass das
Skript ausschließlich den Klon anstelle der Originaldefinition verwendet.

Nachfolgend wird ein Skript einer Daten-Dropdown-Liste angezeigt. Das Skript füllt die Liste mit
Daten einer Datenquelle.

...
var oDB = xfa.sourceSet.nodes.item(nIndex);
...
// Suchknoten mit dem Klassennamen "command"
var nDBIndex = 0;
while(oDB.nodes.item(nDBIndex).className != "command")
nDBIndex++;

oDB.nodes.item(nDBIndex).query.recordSet.setAttribute("stayBOF", "bofAction");
oDB.nodes.item(nDBIndex).query.recordSet.setAttribute("stayEOF", "eofAction");

Zum Klonen des sourceSet-Modells müssen Sie die Zeile zum Zugriff auf das Modell durch Anfügen
der clone (1)-Methode am Ende der Anweisung entsprechend ändern:

var oDB = xfa.sourceSet.nodes.item(nIndex).clone(1);

HINWEIS: Sie können die geklonte Datenverbindungs-Node in einer Variablen oder in einem variab-
lendefinierten Skriptobjekt speichern.

Ereignisse
5. Ereignisse
Alle Berechnungen und Skripten, die einem Formularobjekt hinzugefügt werden, sind jeweils einem
bestimmten Ereignis zugeordnet. Unter einem Ereignis versteht man ein bestimmtes Vorkommnis
oder eine Aktion, das bzw. die den Zustand eines Formulars ändern kann. Wenn eine Änderung des
Zustands eintritt, wird automatisch eine mit dem Ereignis verbundene Berechnung oder ein Skript
aufgerufen. Ereignisse können zu beliebigen Zeitpunkten auftreten – vom Beginn des Formularwie-
dergabeprozesses, wenn Daten mit einem Formularentwurf zusammengeführt werden, bis hin zum
Ausfüllen des Formulars, wenn ein Benutzer die Formularobjekte in einer Client-Anwendung
verwendet. Durch die Verknüpfung von Berechnungen und Skripten mit bestimmten Ereignissen
können Sie präzise steuern, wie Formularobjekte und -daten dargestellt werden und wie die Objekte
und Daten auf die Benutzerinteraktionen beim Ausfüllen des Formulars reagieren.

Eine einzelne Zustandsänderung oder Aktion beim Ausfüllen des Formulars kann mehrere Ereig-
nisse auslösen. Wenn Sie beispielsweise mit der Tabulatortaste vom aktuellen Feld zum nächsten
Feld navigieren, wird das exit Ereignis für das aktuelle Feld und das enter -Ereignis für das
nächste Feld ausgelöst. Wenn sich das aktuelle und das nächste Feld in unterschiedlichen Teilfor-
mularen befinden, werden insgesamt vier Ereignisse ausgelöst, und zwar das exit -Ereignisse für
das aktuelle Feld und das Teilformular und das enter -Ereignis für das nächste Feld und Teilfor-
mular. In der Regel gilt für alle Kategorien der Formularereignisse eine vorhersehbare Reihenfolge.
5.1. Ereignistypen
Die Formularereignisse werden in vier Kategorien unterteilt:

Prozessereignisse
Dieser Ereignistyp wird durch einen internen Prozess bzw. eine interne Aktion im Zusammen-
hang mit Objekten in einem Formular automatisch ausgelöst. Angenommen, ein Benutzer
klickt beim Ausfüllen des Formulars auf eine Schaltfläche, durch die dem Formular eine neue
Seite hinzugefügt wird, werden die initialize, calculate, validate und
layout:ready -Prozessereignisse automatisch für die neue Seite initiiert.

Interaktive Ereignisse
Dieser Ereignistyp wird direkt durch Aktionen beim Ausfüllen des Formulars ausgelöst. Wenn
ein Benutzer z. B. den Zeiger über ein Feld in einem Formular bewegt, wird mouseEnter
als Antwort auf die Aktiion initiiert.

Anwendungsereignisse
Dieser Ereignistyp wird durch die Aktionen ausgelöst, die eine Client-Anwendung oder eine
Serveranwendung ausführt. Beispiel: Sie können eine Berechnung oder ein Skript erstellen,
um unmittelbar nach dem Speichern des Formulars eine Aufgabe auszuführen. Verwenden
Sie hierzu das postPrint -Ereignis.
33

Ereignisse 5

 34
VERKNPFTE LINKS:
Prozessereignisse
Interaktive Ereignisse
Anwendungsereignisse
5.2. Prozessereignisse
Prozessereignisse werden durch einen internen Prozess bzw. eine interne Aktion im Zusammen-
hang mit einem Formular oder Objekten in einem Formular automatisch ausgelöst. Sie werden
unmittelbar nach bedeutsamen Formularänderungen initiiert, z. B. nach dem Zusammenführen
eines Formularentwurfs mit Daten oder nach dem Abschluss der Formularpaginierung. Prozesser-
eignisse werden außerdem unmittelbar nach dem Initiieren interaktiver Ereignisse ausgelöst.
Beispielsweise wird direkt nach dem Initiieren eines beliebigen interaktiven Ereignisses das
calculate Ereignis initiiert, gefolgt vom validate -Ereignis.

Die folgenden Prozessereignisse sind im Skript-Editor unter „Anzeigen“ verfügbar:

• calculate

• form:ready

• indexChange

• initialize

• layout:ready

• validate

Prozessereignisse können aufgrund von Abhängigkeiten viele Male initiiert werden. Unter
Abhängigkeiten versteht man Aktionen, die einem einzelnen Ereignis zugeordnet sind, das
letztlich ein oder mehrere zusätzliche Ereignisse auslöst. Angenommen, ein Benutzer klickt
beim Ausfüllen eines Formulars auf eine Schaltfläche, um einen zuvor ausgeblendeten Bereich
des Formulars einzublenden. Durch Klicken auf die Schaltfläche wird nicht nur eine Reihe
interaktiver und Prozessereignisse für die Schaltfläche selbst ausgelöst, sondern auch eine
Reihe von Prozessereignissen für das neue Teilformular.

In der folgenden Abbildung wird die normale Ereignisabfolge bis zum Öffnen eines
PDF-Formulars in Acrobat oder Acrobat Reader veranschaulicht.

Ereignisse
Nach dem Öffnen des Formulars in Acrobat oder Acrobat Reader werden diese Prozessereig-
nisse unter Umständen aufgrund von Formularänderungen erneut ausgelöst. Beispielsweise
werden die calculate, validate und layout:ready für ein Objekt unmittelbar nach
dem Eintreten beliebiger interaktiver Ereignisse ausgelöst. Die mit den Prozessereignissen
verknüpften Berechnungen und Skripten werden daher mehrmals ausgeführt.

VERKNPFTE LINKS:
Interaktive Ereignisse
Anwendungsereignisse
calculate-Ereignis
docReady-Ereignis
form:ready-Ereignis
indexChange-Ereignis
initialize-Ereignis
layout:ready-Ereignis
validate-Ereignis
Festlegen, wann eine Berechnung oder ein Skript ausgeführt werden soll
35

Ereignisse 5
5.3. Interaktive Ereignisse
 36
Interaktive Ereignisse werden direkt durch Benutzeraktionen beim Ausfüllen des Formulars ausge-
löst. Daher sind sie für eine Vielzahl von Berechnungs- und Skriptaufgaben nützlich. So können
Sie den zum Beispiel ein Skrip zum mouseEnter -Ereignis für ein Textfeld hinzufügen, das die
Rahmenfarbe des Felds in Blau ändert, und ein Skript zum mouseExit -Ereignis, das die Rahmen-
farbe wiederherstellt. Durch diese Aktion wird das Feld visuell hervorgehoben, wenn ein Benutzer
beim Ausfüllen des Formulars den Zeiger über das Feld bewegt. Interaktive Ereignisse sind auch
nützlich, wenn Formulardaten in Abhängigkeit von einer Benutzerauswahl geändert werden sollen.
So können Sie den zum Beispiel ein Skrip zum change -Ereignis für eine Dropdown-Liste hinzu-
fügen, das die Datenwerte in mehreren Feldern je nach dem Wert, der der Formularbenutzer in der
Dropdown-Liste auswählt.

Die folgenden interaktiven Ereignisse sind im Skript-Editor unter „Anzeigen“ verfügbar:

• change

• click

• enter

• exit

• mouseDown

• mouseEnter

• mouseExit

• mouseUp

• postOpen

• postSign

• preOpen

• preSign

In der folgenden Abbildung wird die normale Ereignisabfolge beim Ausfüllen von Formularen
veranschaulicht, wenn der Benutzer mit der Maus ein Objekt auswählt und dessen Wert ändert.

HINWEIS: Die Abbildung veranschaulicht eine normale Ereignisabfolge. Diese Abfolge kann aber
von bestimmten Aktionen des Formularbenutzers und von bestimmten Formularobjekten geän-
dert werden. Wenn beispielsweise ein Formularbenutzer in der Dropdown-Liste einen Wert
auswählt, tritt das mouseExit -Ereignis tritt nach dem click -Ereignis auf, aber vor den
change oder full Ereignissen. Wenn ein Benutzer ein Feld auswählt, die Maustaste drückt
und dann das Feld schließt, während die Maustaste noch gedrückt wird, tritt das mouseUp
-Ereignis anders auf, als in dieser Abbildung beschriebenen.

Ereignisse
In der folgenden Abbildung wird die normale Ereignisabfolge beim Ausfüllen von Formularen
veranschaulicht, wenn der Benutzer über die Tastatur ein Objekt auswählt und dessen Wert
ändert.
37

Ereignisse 5

 38
VERKNPFTE LINKS:
change-Ereignis
click-Ereignis
enter-Ereignis
exit-Ereignis
full-Ereignis
mouseDown-Ereignis
mouseEnter-Ereignis
mouseExit-Ereignis
mouseUp-Ereignis
postOpen-Ereignis
postSign-Ereignis
preOpen-Ereignis
preSign-Ereignis

Ereignisse
5.4. Anwendungsereignisse
Anwendungsereignisse werden durch Aktionen ausgelöst, die eine Client-Anwendung oder eine
Serveranwendung infolge einer Benutzeraktion beim Ausfüllen des Formulars oder eines automati-
sierten Prozesses ausführt. Anwendungsereignisse kommen in normalen Ereignisabfolgen nicht vor.
Sie sind vielmehr Einzelereignisse im Zusammenhang mit Aktionen, welche die Client- oder Server-
anwendung ausführt.

Die folgenden Anwendungsereignisse sind im Skript-Editor unter „Anzeigen“ verfügbar:

• docClose

• docReady

• postPrint

• postSave

• postSubmit

• prePrint

• preSave

• preSubmit

Beispielsweise wird in der folgenden Abbildung die normale Ereignisabfolge für das preSave
-Ereignis veranschaulicht.

Wenn ein Formularbenutzer das Formular in Acrobat oder Adobe Reader speichert, wird das
preSave -Ereignis unmittelbar vor dem Speichern-Vorgang initiiert, gefolgt von den
calculate, validate und layout:ready Ereignissen in dieser Reihenfolge für alle
Objekte im Formular. Die gleiche Ereignisabfolge wird initiiert, wenn das Formular ein Skript
enthält, welches das Formular programmatisch speichert.

Eine ähnliche Ereignisabfolge gilt für alle anderen oben aufgeführten Anwendungsereignisse.
39

Ereignisse 5

 40
VERKNPFTE LINKS:
docClose-Ereignis
postPrint-Ereignis
postSave-Ereignis
postSubmit-Ereignis
prePrint-Ereignis
preSave-Ereignis
preSubmit-Ereignis
5.5. calculate-Ereignis

5.5.1. Beschreibung
Wird unter den folgenden Umständen initiiert:

• Wenn der Formularentwurf und die Daten zum fertigen Formular zusammengeführt werden.

• Wenn sich einer der Werte ändert, von denen die Berechnung abhängig ist, z. B. der Wert eines
bestimmten Felds, es sei denn, der berechnete Wert wurde beim Ausfüllen des Formulars
manuell vom Benutzer überschrieben. Als Ergebnis zeigt das Objekt den Rückgabewert des
Ereignisses an. Die Eigenschaften für manuell überschriebene Felder befinden sich auf der
Registerkarte „Wert“ der Palette „Objekt“.

• Wenn ein Feld den Fokus verliert, z. B. wenn ein Benutzer klickt oder die Tabulatortaste
drückt, um ein Feld zu verlassen.

Bei der Verwendung des calculate -Ereignisses zum Durchführen von Berechnungen oder
Skripte, sind folgende potenzielle Probleme zu beachten:

• Berechnungen und Skripte im calculate -Ereignis dürfen keine Änderungen an der
Formularstruktur vornehmen; davon ausgenommen sind die Formularfeld- und Datenwerte.

• Eingefügter Inhalt durch das calculate -Ereignis müssen den zugehörigen Validierungen
für das Objekt entsprechen; anderenfalls werden Validierungsfehler gemeldet.

• Berechnungen und Skripten dürfen keine Endlosschleifen enthalten, weil diese dazu führen,
dass das Formular den Wert kontinuierlich aktualisiert. Beispielsweise könnte ein Skript,
das den Wert eines Felds im Rahmen eines Schleifenausdrucks inkrementiert, z. B. eine
while oder for Schleife, eine Endlosschleife erstellen.

• Der zuletzt evaluierte Ausdruck im calculate -Ereignis wird verwendet, um den Wert des
aktuellen Formularobjekts auszufüllen. Wenn das calculate -Ereignis den Wert des aktu-
ellen Felds zunächst auf 500 festlegt und anschließend den Wert eines weiteren Felds auf 1000
festlegt, zeigen beide Felder zur Laufzeit den Wert 1000 an. Daher müssen Sie die Skripte, die
Sie dem calculate -Ereignis hinzufügen auf die Skripte beschränken, die sich speziell mit
dem Festlegen des Werts des aktuellen Felds beschäftigen.

Ereignisse
5.5.2. Tippen Sie
Prozessereignis
5.5.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.5.4. Version
XFA 2.1
5.5.5. Beispiel
Verwenden Sie das calculate -Ereignis zur Aktualisierung von Zahlenwerten in Feldern, weil es
unmittelbar nach den meisten anderen Ereignissen initiiert wird. In einem Bestellformular können
Sie beispielsweise das calculate -Ereignis für ein Feld verwenden, um den Prozentwert der zu
bestimmen. Die Berechnung wird jedes Mal ausgeführt, wenn die Werte in den Formularfeldern
geändert werden. Auf diese Weise wird gewährleistet, dass der für die Umsatzsteuer angezeigte Wert
immer korrekt ist.

Da das calculate -Ereignis aber viele Male initiiert werden kann, müssen Sie sicherstellen, dass
die Berechnung oder das Skript, die bzw. das Sie dem Ereignis hinzufügen, nicht zu einer unnötigen
Inkrementierung von Datenwerten führt. Wenn z. B. im Rahmen der Umsatzsteuerberechnung der
Wert der Umsatzsteuer den Gesamtkosten bei jedem calculate -Ereignis hinzugefügt wird,
ist möglicherweise der resultierende Gesamtkostenwert im Formular zu groß.

Beispiele für die Verwendung des calculate -Ereignisses finden Sie unter Feldsummen
berechnen.

VERKNPFTE LINKS:
Ereignisse
Prozessereignisse
41

Ereignisse 5
5.6. change-Ereignis

5.6.1. Beschreibung
 42
Wird ausgelöst, wenn ein Benutzer beim Ausfüllen des Formulars den Inhalt eines Feldes durch eine
der folgenden Aktionen ändert:

• Tasteneingabe, während das Feld den Tastaturfokus besitzt

• Dateneingabe in das Feld

• Auswahl aus einem Listenfeld oder einer Dropdown-Liste

• Aktivieren oder Deaktivieren eines Kontrollkästchens

• Änderung der Einstellungen einer Optionsfeldgruppe

Dieses Ereignis wird nicht ausgelöst, wenn die Objektwerte durch Berechnungen oder
Skripten bzw. durch die Zusammenführung des Formularentwurfs mit Daten geändert
werden.
5.6.2. Tippen Sie
Interaktives Ereignis
5.6.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
(Nur für Dropdown-Listen)
5.6.4. Version
XFA 2.1

Ereignisse
5.6.5. Beispiel
Dieses Ereignis eignet sich für Berechnungen oder Skripten, die ausgelöst werden müssen, wenn ein
Benutzer beim Ausfüllen des Formulars den Wert eines Feldes ändert. Beispielsweise können Sie das
change Ereignis für eine Dropdown-Liste verwenden, um bestimmte Zeilen in einer Tabelle
hervorzuheben. Jedes Mal, wenn der Benutzer einen Wert in der Dropdown-Liste auswählt, wird
dann die entsprechende Tabellenzeile hervorgehoben.

HINWEIS: Skripterstellung für ein Objekt 'this.rawValue' funktioniert nicht. Verwenden Sie
stattdessen die Ereignismodell-Eigenschaft $event.fullText des aktuellen Werts des Objekts.

Beispiele für die Verwendung des change -Ereignisses finden Sie unter Aktuellen oder vorherigen
Wert einer Dropdown-Liste abrufen.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
5.7. click-Ereignis

5.7.1. Beschreibung
Wird initiiert, wenn innerhalb des Bereichs ein Mausklick erfolgt. Wenn ein click -Ereignis für
einen Text- oder ein numerisches Feld initiiert wird, werden Berechnungen oder Skripten sofort
ausgeführt. Der Wert des Feldes wird aber erst dann aufgrund von Berechnungen und Skripten
geändert, wenn das Feld den Fokus verliert.

HINWEIS: Sie können keine Berechnung und kein Skript auf das click Ereignis der Senden-Schalt-
fläche platzieren, weil die Berechnung oder das Skript die Übergabeaktion außer Kraft setzt. Berech-
nungen und Skripte stattdessen im preSubmit -Ereignis einer Senden-Schaltfläche platzieren.
Weitere Informationen zu Aktionen zum Senden von Formularen erhalten Sie in der Designer-Hilfe.
5.7.2. Tippen Sie
Interaktives Ereignis
43

Ereignisse 5
5.7.3. Unterstützung
 44
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.7.4. Version
XFA 2.1
5.7.5. Beispiel
Dieses Ereignis eignet sich für die Ausführung einer Aktion, nachdem ein Benutzer im Formular auf
eine Schaltfläche geklickt oder ein Optionsfeld bzw. ein Kontrollkästchen aktiviert hat. Beispiels-
weise können Sie das click -Ereignis für ein Kontrollkästchen verwenden, um ein Formularfeld
ein- und auszublenden.

Beispiele für die Verwendung des click -Ereignisses finden Sie unter Visuelle Eigenschaften von
Objekten im Client ändern.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
preSubmit-Ereignis
5.8. docClose-Ereignis

5.8.1. Beschreibung
Wird ganz am Ende der Verarbeitung eines Formulars ausgeführt, sofern sämtliche Formularüber-
prüfungen fehlerfrei durchgeführt wurden.
5.8.2. Tippen Sie
Anwendungsereignis

Ereignisse
5.8.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.8.4. Version
XFA 2.1
5.8.5. Beispiel
Dieses Ereignis wird erst spät ausgelöst und führt keine Änderungen am gespeicherten Formular
durch. Es soll vielmehr die Möglichkeit bieten, einen Beenden-Status oder eine Fertig-Meldung
zu erzeugen. Beispielsweise können Sie das docClose -Ereignis verwenden, um eine Meldung
mit dem Hinweis einzublenden, dass das Formular fertig ausgefüllt ist.

VERKNPFTE LINKS:
Ereignisse
Anwendungsereignisse
Prozessereignisse
5.9. docReady-Ereignis

5.9.1. Beschreibung
Wird sofort nach dem Öffnen des Formulars in Acrobat oder Adobe Reader ausgelöst.
5.9.2. Tippen Sie
Anwendungsereignis
45

Ereignisse 5
5.9.3. Unterstützung
 46
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.9.4. Version
XFA 2.1
5.9.5. Beispiel
Dies ist das erste Ereignis, das nach dem Öffnen eines Formulars in Acrobat oder Adobe Reader
ausgelöst wird. Dieses Ereignis sollte für alle Berechnungs- oder Skriptaufgaben verwendet werden,
für welche das vollständige Formular gebraucht wird oder die nur einmal beim ersten Öffnen des
Formulars ausgeführt werden sollen. Beispielsweise können Sie mit dem docReady -Ereignis
die Version von Acrobat oder Adobe Reader prüfen und eine Meldung einblenden, wenn vor
dem Ausfüllen des Formulars eine Anwendungsaktualisierung erforderlich ist.

VERKNPFTE LINKS:
Ereignisse
Anwendungsereignisse
5.10. enter-Ereignis

5.10.1. Beschreibung
Wird ausgelöst, wenn ein Feld oder Teilformular den Tastaturfokus erhält, und zwar unabhängig
davon, ob dies durch eine Benutzeraktion verursacht wird (Wechsel in ein Feld per Tabulatortaste
oder Mausklick) oder durch ein Skript, welches den Fokus programmatisch setzt.
5.10.2. Tippen Sie
Interaktives Ereignis

Ereignisse
5.10.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.10.4. Version
XFA 2.1
5.10.5. Beispiel
Mit diesem Ereignis können Sie Hilfetext oder andere Meldungen bereitstellen, welche dem
Benutzer das Ausfüllen des aktuellen Feldes oder Teilformulars erleichtern. Angenommen, in ein
Feld muss ein Wert in einem bestimmten Format eingegeben werden oder beim Ausfüllen eines
Feldes sind spezifische Anweisungen zu beachten. In diesem Fall können Sie mit diesem Ereignis
eine Meldung einblenden, welche den Benutzer über die besonderen Anforderungen informiert.

Beispiele für die Verwendung des enter -Ereignisses finden Sie unter Felder als Reaktion auf
Benutzeraktionen hervorheben.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
5.11. exit-Ereignis

5.11.1. Beschreibung
Wird ausgelöst, wenn das Feld oder Teilformular den Tastaturfokus verliert, und zwar unabhängig
davon, ob dies durch eine Benutzeraktion verursacht wird (Wechsel in ein anderes Feld per Tabula-
tortaste oder Mausklick außerhalb des Feldes) oder durch ein Skript, welches den Fokus program-
matisch entfernt.

HINWEIS: Wenn das Skript den Wert des aktuellen Felds bearbeiten soll, müssen Sie das Skript
eventuell an das calculate -Ereignis anhängen.
47

Ereignisse 5
5.11.2. Tippen Sie
 48
Interaktives Ereignis
5.11.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.11.4. Version
XFA 2.1
5.11.5. Beispiel
Dieses Ereignis eignet sich zur Überprüfung von Felddaten, wenn der Benutzer den Fokus von
einem Feld entfernt. Angenommen, in ein Feld muss ein Wert eingegeben werden. In diesem Fall
können Sie mit diesem Ereignis eine Meldung bereitstellen, welche den Benutzer darauf aufmerksam
macht, dass das Formular nur gesendet werden kann, wenn in dieses Feld Daten eingegeben wurden.

Beispiele für die Verwendung des exit -Ereignisses finden Sie unter Felder als Reaktion auf
Benutzeraktionen hervorheben.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
5.12. form:ready-Ereignis

5.12.1. Beschreibung
Wird initiiert, wenn Formularentwurf und Daten zusammengeführt wurden, das Formular
im Speicher vorhanden ist und die initialize, calculate und validate -Ereignisse
abgeschlossen sind.

HINWEIS: Das form:ready-Ereignis ist nur für Objekte in der Designansicht und nicht für Objekte
auf Masterseiten vorgesehen (siehe Prozessereignisse).

Ereignisse
5.12.2. Tippen Sie
Prozessereignis
5.12.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.12.4. Version
XFA 2.1
5.12.5. Beispiel
Dieses Ereignis eignet sich zur Ausführung von Aufgaben, nachdem Formularentwurf und Daten
zusammengeführt wurden, aber bevor das Layout fertig ist. Beispielsweise können Sie mit diesem
Ereignis die Anordnung oder Platzierung von Teilformularen im Formular anpassen, bevor das
Formular paginiert und wiedergegeben wird.

VERKNPFTE LINKS:
Ereignisse
5.13. full-Ereignis

5.13.1. Beschreibung
Wird ausgelöst, wenn beim Ausfüllen von Formularen mehr als die maximal zulässige Menge an
Inhalt in ein Feld eingegeben wird. Angenommen, die Eigenschaft für die Längenbegrenzung für ein
Feld wurde auf 5 eingestellt und ein Benutzer versucht, die abcdef Zeichenfolge einzugeben, wird
das full -Ereignis initiiert, sobald der Benutzer den Buchstaben f eingeben.

HINWEIS: Die Eigenschaft „Länge begrenzen“ für ein Feld befindet sich auf der Registerkarte „Feld“ der
Palette „Objekt“.
49

Ereignisse 5
5.13.2. Tippen Sie
 50
Interaktives Ereignis
5.13.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.13.4. Version
XFA 2.1
5.13.5. Beispiel
Verwenden Sie dieses Ereignis, um einen Benutzer darauf hinzuweisen, dass die maximal zulässige
Datenmenge in ein Feld eingegeben wurde. Beispielsweise können Sie eine Meldung mit dem
Hinweis einblenden, dass das Feld voll ist, und Möglichkeiten zur Problemlösung vorschlagen.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
5.14. indexChange-Ereignis

5.14.1. Beschreibung
Wird ausgelöst, nachdem ein Teilformular durch Zusammenführen neuer Daten mit dem Formular
oder mit Hilfe von Skripten eingefügt, verschoben oder aus dem Formular entfernt wurde.

Beachten Sie, dass das indexChange-Ereignis nicht ausgelöst wird, wenn die letzte Zeile einer Tabelle
gelöscht wird.

HINWEIS: Dieses Ereignis wird nur von den Teilformularinstanzen empfangen, die vom Instanzma-
nager verwaltet werden; bei Teilformularsätzen wird es ignoriert.

Ereignisse
5.14.2. Tippen Sie
Prozessereignis
5.14.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.14.4. Version
XFA 2.5
5.14.5. Beispiel
Mit diesem Ereignis können Sie anhand des Instanzwerts eines bestimmten Objekts Eigenschaften
festlegen. Beispielsweise lässt sich damit die abwechselnde Zeilenschattierung in einer Tabelle steuern.

VERKNPFTE LINKS:
Ereignisse
Prozessereignisse
5.15. initialize-Ereignis

5.15.1. Beschreibung
Wird für alle Objekte initiiert, nachdem der Formularentwurf mit Daten zusammengeführt wurde.
5.15.2. Tippen Sie
Prozessereignis
51

Ereignisse 5
5.15.3. Unterstützung
 52
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.15.4. Version
XFA 2.1
5.15.5. Beispiel
Mit diesem Ereignis können Sie beim Erstellen eines Objekts Aktionen ausführen, die entweder
durch eine Benutzeraktion beim Ausfüllen des Formulars oder im Rahmen des Formularerstel-
lungsprozesses verursacht werden. Beispielsweise können Sie die Einstellungen für neue Instanzen
eines Teilformularobjekts steuern, welche der Benutzer dem Formular durch Klicken auf eine
Schaltfläche hinzufügt.

VERKNPFTE LINKS:
Ereignisse
Prozessereignisse
5.16. layout:ready-Ereignis

5.16.1. Beschreibung
Wird initiiert, wenn Formularentwurf und Daten zusammengeführt wurden, das Formular
vorhanden ist und das Layout des Formulars angewendet wurde. Zu diesem Zeitpunkt wurde das
fertige Formular noch nicht wiedergegeben; eine Berechnung oder ein Skript, die bzw. das bei
diesem Ereignis ausgeführt werden soll, könnte das Layout vor der Wiedergabe also modifizieren.
Dieses Ereignis tritt auch nach der Formularwiedergabe auf, wenn eine Berechnung oder ein Skript
die Daten ändert bzw. eine Änderung des Formulars in Acrobat oder Adobe Reader bewirkt.

HINWEIS: Skripten mit „layout:ready“ sollten das Layout des Formulars nicht ändern. Dies beinhaltet
das Vergrößern oder Verkleinern von Teilformularen oder Tabellen, das dynamische Hinzufügen von
Fragmenten zur Laufzeit, das Hinzufügen oder Löschen von Teilformularinstanzen und das Hin- und
Herschalten zwischen den Funktionen „sichtbares Objekt“ und „ausgeblendetes Objekt“.

Felder interaktiver Formulare mit dem „layout:ready“-Ereignis werden in Acrobat ab Version 7.0.5
unterstützt.

Ereignisse
5.16.2. Tippen Sie
Prozessereignis
5.16.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.16.4. Version
XFA 2.1
5.16.5. Beispiel
Mit diesem Ereignis können Sie unmittelbar nach der Festlegung des Formularlayouts bestimmte
Aufgaben ausführen. Beispielsweise können Sie die Anzahl der Seiten bestimmen, welche das
Formular enthält.

VERKNPFTE LINKS:
Ereignisse
Prozessereignisse
5.17. mouseDown-Ereignis

5.17.1. Beschreibung
Wird initiiert, wenn ein Benutzer beim Ausfüllen des Formulars die Maustaste drückt, während sich
der Zeiger in einem Feld befindet.

HINWEIS: Wenn ein mouseDown -Ereignis für ein Text- oder numerisches Feld ausgelöst wird,
werden Berechnungen oder Skripte sofort ausgeführt. Der Wert des Feldes wird aber erst dann
aufgrund von Berechnungen und Skripten geändert, wenn das Feld den Fokus verliert. Wenn ein
mouseDown -Ereignis für ein Unterschriftsfeld initiiert wird, wird das Ereignis vor Beginn des Unter-
schriftsprozesses ausgelöst.
53

Ereignisse 5
5.17.2. Tippen Sie
 54
Interaktives Ereignis
5.17.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.17.4. Version
XFA 2.1
5.17.5. Beispiel
Dieses Ereignis eignet sich für die Ausführung einer Aktion, nachdem ein Benutzer im Formular auf
eine Schaltfläche geklickt oder ein Optionsfeld bzw. ein Kontrollkästchen aktiviert hat. Beispiels-
weise können Sie mit dem mouseDown -Ereignis für ein Kontrollkästchen verwenden, um ein
Formularfeld ein- und auszublenden. Dieses Ereignis ist konzeptionell gesehen ähnlich dem click
Ereignis und erfüllt einen ähnlichen Zweck.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
click-Ereignis
5.18. mouseEnter-Ereignis

5.18.1. Beschreibung
Dieses Ereignis wird ausgelöst, wenn der Benutzer beim Ausfüllen des Formulars den Mauszeiger
in den Feldbereich bewegt; dabei muss nicht notwendigerweise die Maustaste gedrückt werden.
Es wird nicht ausgelöst, wenn der Mauszeiger aus einem anderen Grund in das Feld gelangt,
z. B. weil ein darüber liegendes Fenster geschlossen wurde.

Ereignisse
5.18.2. Tippen Sie
Interaktives Ereignis
5.18.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.18.4. Version
XFA 2.1
5.18.5. Beispiel
Sie können dieses Ereignis verwenden, um dem Benutzer beim Ausfüllen des Formulars visuelles
Feedback zu liefern mit dem mouseExit -Ereignis. Beispielsweise können Sie mit diesem Ereignis
die Rahmen- oder Hintergrundfarbe eines Objekts ändern, damit der Benutzer beim Ausfüllen
visuell erkennen kann, dass er sich zurzeit in einem bestimmten Feld befindet.

Beispiele für die Verwendung des mouseEnter -Ereignisses finden Sie unter Felder als Reaktion
auf Benutzeraktionen hervorheben.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
5.19. mouseExit-Ereignis

5.19.1. Beschreibung
Dieses Ereignis wird ausgelöst, wenn der Benutzer beim Ausfüllen des Formulars den Mauszeiger
aus dem Feld herausbewegt, auch wenn er dabei die Maustaste gedrückt hält. Es wird nicht ausgelöst,
wenn der Mauszeiger aus einem anderen Grund aus dem Feld bewegt wird, z. B. weil ein darüber
liegendes Fenster geöffnet wurde.
55

Ereignisse 5
5.19.2. Tippen Sie
 56
Interaktives Ereignis
5.19.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.19.4. Version
XFA 2.1
5.19.5. Beispiel
Sie können dieses Ereignis verwenden, um dem Benutzer beim Ausfüllen des Formulars visuelles
Feedback zu liefern mit dem mouseEnter -Ereignis. Beispielsweise können Sie mit diesem
Ereignis die Rahmen- oder Hintergrundfarbe eines Objekts auf die ursprüngliche Einstellung
zurücksetzen, damit der Benutzer beim Ausfüllen visuell erkennen kann, dass er sich nicht mehr
in einem bestimmten Feld befindet.

Beispiele für die Verwendung des mouseExit -Ereignisses finden Sie unter Felder als Reaktion auf
Benutzeraktionen hervorheben.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse

Ereignisse
5.20. mouseUp-Ereignis

5.20.1. Beschreibung
Wird initiiert, wenn ein Benutzer beim Ausfüllen des Formulars die Maustaste loslässt, während sich
der Zeiger in einem Feld befindet.

HINWEIS: Wenn ein mouseUp -Ereignis für ein Text- oder numerisches Feld eintritt, werden Berech-
nungen oder Skripten sofort ausgeführt. Der Wert des Feldes wird aber erst dann aufgrund von Berech-
nungen und Skripten geändert, wenn das Feld den Fokus verliert.
5.20.2. Tippen Sie
Interaktives Ereignis
5.20.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.20.4. Version
XFA 2.1
5.20.5. Beispiel
Dieses Ereignis eignet sich für die Ausführung von Aktionen, nachdem ein Benutzer im Formular
auf eine Schaltfläche geklickt oder ein Optionsfeld bzw. ein Kontrollkästchen aktiviert hat. Beispiels-
weise können Sie mit dem mouseUp -Ereignis für ein Kontrollkästchen verwenden, um ein Formu-
larfeld ein- und auszublenden. Dieses Ereignis ist konzeptionell gesehen ähnlich dem click
Ereignis und erfüllt einen ähnlichen Zweck.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
57

Ereignisse 5
5.21. postOpen-Ereignis

5.21.1. Beschreibung
 58
Wird ausgeführt, unmittelbar nachdem ein Benutzer beim Ausfüllen des Formulars eine Aktion
ausführt, mit welcher die Daten in einer Dropdown-Liste angezeigt werden. Dies geschieht
beispielsweise, wenn der Benutzer auf das Pfeilsymbol neben der Dropdown-Liste klickt oder
wenn er mit der Tabulatortaste zur Dropdown-Liste wechselt und anschließend das Pfeilsymbol
verwendet. Das Ereignis wird ausgelöst, nachdem der Inhalt der Dropdown-Liste angezeigt wird.

HINWEIS: Dieses Ereignis ist nur für Dropdown-Listenobjekte vorgesehen.
5.21.2. Tippen Sie
Interaktives Ereignis
5.21.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.21.4. Version
XFA 2.8
5.21.5. Beispiel
Mit diesem Ereignis können Sie Fehler oder unerwartete Ergebnisse behandeln, die bei der Verar-
beitung des Öffnens der Dropdown-Liste auftreten. Wenn das preOpen -Ereignis von einem Skript
anstelle einer Benutzerinteraktion gesendet wird oder wenn das Öffnen der Dropdown-Listendaten
aufgrund eines Fehlers nicht eintritt, wird das postOpen -Ereignis trotzdem gesendet, damit
Fehlerbearbeitungsskripte ausgeführt werden können.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse

Ereignisse
5.22. postPrint-Ereignis

5.22.1. Beschreibung
Wird sofort initiiert, sobald das wiedergegebene Formular zum Drucker, Spooler oder Ausgabeziel
gesendet wurde.
5.22.2. Tippen Sie
Anwendungsereignis
5.22.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.22.4. Version
XFA 2.1
5.22.5. Beispiel
Mit diesem Ereignis können Sie Meldungen für den Benutzer anzeigen, nachdem das Formular
gedruckt wurde. Sie können beispielsweise ein Skript auf dem postPrint -Ereignisses erstellen,
um die Formularbenutzer daran zu erinnern, wie sie das Formular manuell einreichen können.

VERKNPFTE LINKS:
Ereignisse
Anwendungsereignisse
59

Ereignisse 5
5.23. postSave-Ereignis

5.23.1. Beschreibung
 60
Wird sofort ausgeführt, nachdem ein Benutzer ein Formular im PDF- oder XDP-Format gespeichert
hat. Dieses Ereignis wird nicht ausgeführt, wenn Sie eine Teilmenge des Formulars (z. B. nur
Formulardaten) in das XDP-Format exportieren.
5.23.2. Tippen Sie
Anwendungsereignis
5.23.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.23.4. Version
XFA 2.1
5.23.5. Beispiel
Mit diesem Ereignis können Sie Meldungen für den Benutzer anzeigen, nachdem die Formulardaten
gespeichert wurden. Sie können beispielsweise ein Skript auf dem postSave -Ereignis erstellen,
um den Formularbenutzer daran zu erinnern, wie viel Zeit bleibt, um das Formular auszufüllen
und zu senden.

VERKNPFTE LINKS:
Ereignisse
Anwendungsereignisse

Ereignisse
5.24. postSign-Ereignis

5.24.1. Beschreibung
Wird ausgelöst, unmittelbar nachdem ein Benutzer beim Ausfüllen des Formulars eine Aktion
ausführt, mit welcher dem Formular eine digitale Unterschrift hinzugefügt wird.

HINWEIS: Dieses Ereignis ist nur für das Unterschriftsfeld-Objekt vorgesehen.
5.24.2. Tippen Sie
Interaktives Ereignis
5.24.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.24.4. Version
XFA 2.8
5.24.5. Beispiel
Mit diesem Ereignis können Sie einen Benutzer über Einschränkungen informieren, die nach der
digitalen Unterzeichnung des Formulars gelten.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
61

Ereignisse 5
5.25. postSubmit-Ereignis

5.25.1. Beschreibung
 62
Wird ausgelöst, unmittelbar nachdem ein Formular über das HTTP-Protokoll Daten an den Host
übergibt.

HINWEIS: Dieses Ereignis unterscheidet nicht zwischen Übergaben, die durch Instanzen angeklickter
Schaltflächen ausgelöst werden oder die für unterschiedliche URLs vorgesehen sind. Wenn ein Skript
Unterscheidungen dieser Art benötigt, muss es entsprechenden Skriptcode enthalten, damit ermittelt
werden kann, auf welche Schaltfläche geklickt wurde. Im Allgemeinen ist das postSubmit -Ereignis
ist konzeptionell gesehen ähnlich dem postSave -Ereignis und dient einem ähnlichen Zweck.
5.25.2. Tippen Sie
Anwendungsereignis
5.25.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
(Nur für Senden-Schaltflächen)
5.25.4. Version
XFA 2.8
5.25.5. Beispiel
Mit diesem Ereignis können Sie unmittelbar nach dem Senden der Formulardaten bestimmte
Aktionen ausführen. Sie können beispielsweise ein Skript auf dem postSubmit -Ereignis erstellen,
um eine Bestätigung anzuzeigen, dass die Datenübergabe erfolgreich durchgeführt wurde.

VERKNPFTE LINKS:
Ereignisse
Anwendungsereignisse

Ereignisse
5.26. preOpen-Ereignis

5.26.1. Beschreibung
Wird ausgeführt, wenn ein Benutzer beim Ausfüllen des Formulars eine Aktion ausführt, mit
welcher die Dropdown-Liste angezeigt wird. Dies geschieht beispielsweise, wenn der Benutzer
auf das Pfeilsymbol neben der Dropdown-Liste klickt oder wenn er mit der Tabulatortaste zur
Dropdown-Liste wechselt und anschließend das Pfeilsymbol verwendet. Das Ereignis wird
ausgelöst, bevor der Inhalt der Dropdown-Liste angezeigt wird.

HINWEIS: Dieses Ereignis ist nur für Dropdown-Listenobjekte vorgesehen.
5.26.2. Tippen Sie
Interaktives Ereignis
5.26.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.26.4. Version
XFA 2.4
5.26.5. Beispiel
Mit diesem Ereignis können Sie das Laden großer Mengen von Listenelementen steuern.
Beispielsweise können Sie eine feste Anzahl von Datensätzen aus einer Datenquelle in eine
Dropdown-Liste laden. Dadurch wird die Reaktionsgeschwindigkeit des Formulars beim
Ausfüllen verbessert.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse
63

Ereignisse 5
5.27. prePrint-Ereignis

5.27.1. Beschreibung
 64
Wird unmittelbar vor Beginn der Wiedergabe eines Formulars zum Drucken ausgelöst. Sie können
den Druckvorgang mit diesem Ereignis nicht abbrechen.

WICHTIG: Sie sollten dieses Ereignis nicht zum Ausblenden oder Anzeigen von Formularobjekten
verwenden. Beispiel: Wenn der Benutzer das Formular beim Ausfüllen bereits digital unterschrieben
hat, wirkt sich die Verwendung dieses Ereignisses zum Ausblenden aller Schaltflächenobjekte vor dem
Drucken auf den Status der Unterschrift aus.
5.27.2. Tippen Sie
Anwendungsereignis
5.27.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.27.4. Version
XFA 2.1
5.27.5. Beispiel
Mit diesem Ereignis können Sie die Präsenz eines Objekts verändern, um zu verhindern, dass es
gedruckt wird. Beispielsweise können Sie Texte oder Anweisungen ausblenden, die lediglich beim
Ausfüllen des Formulars sichtbar sein sollen.

VERKNPFTE LINKS:
Ereignisse
Anwendungsereignisse

Ereignisse
5.28. preSave-Ereignis

5.28.1. Beschreibung
Wird unmittelbar vor dem Speichern von Formulardaten im PDF- oder XDP-Format ausgelöst.
Dieses Ereignis wird nicht ausgelöst, wenn Sie die Formulardaten oder eine andere Teilmenge
des Formulars in das XDP-Format exportieren.
5.28.2. Tippen Sie
Anwendungsereignis
5.28.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.28.4. Version
XFA 2.1
5.28.5. Beispiel
Mit diesem Ereignis können Sie Formulardaten unmittelbar vor dem Speichern der Daten ändern.
Sie können beispielsweise ein Skript auf dem preSave -Ereignis erstellen, um die Daten zu scannen
und um den Benutzern eine Erinnerungsmeldung anzuzeigen, falls bestimmte erforderliche Felder
noch leer sind.

VERKNPFTE LINKS:
Ereignisse
Anwendungsereignisse
65

Ereignisse 5
5.29. preSign-Ereignis

5.29.1. Beschreibung
 66
Wird ausgelöst, unmittelbar bevor ein Benutzer beim Ausfüllen des Formulars eine Aktion ausführt,
mit welcher dem Formular eine digitale Unterschrift hinzugefügt wird.

HINWEIS: Dieses Ereignis ist nur für das Unterschriftsfeld-Objekt vorgesehen.
5.29.2. Tippen Sie
Interaktives Ereignis
5.29.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser Nein
5.29.4. Version
XFA 2.8
5.29.5. Beispiel
Mit diesem Ereignis können Sie beispielsweise die Daten überprüfen, für welche die digitale
Unterschrift gilt, oder einem Benutzer Informationen bereitstellen, bevor die digitale Unterschrift
angewendet wird.

VERKNPFTE LINKS:
Ereignisse
Interaktive Ereignisse

Ereignisse
5.30. preSubmit-Ereignis

5.30.1. Beschreibung
Wird ausgelöst, wenn ein Formular über das HTTP-Protokoll Daten an den Host übergibt. Zu diesem
Zeitpunkt sind die Daten bereits in einem Datensatz angeordnet, wurden aber noch nicht an den
Host gesendet. Diesem Ereignis zugeordnete Berechnungen und Skripten können die Daten vor
der Übergabe des Formulars prüfen und verändern. Wenn die Berechnung oder das Skript für die
Ausführung auf dem Server konfiguriert ist, sendet das Formular die Daten mit dem Hinweis zum
Server, dass er die Berechnung oder das Skript ausführen soll, bevor eine weitere Verarbeitung der
Daten erfolgt.

HINWEIS: Dieses Ereignis unterscheidet nicht zwischen Übergaben, die durch Instanzen angeklickter
Schaltflächen ausgelöst werden oder die für unterschiedliche URLs vorgesehen sind. Wenn ein Skript
Unterscheidungen dieser Art benötigt, muss es entsprechenden Code enthalten, damit ermittelt werden
kann, auf welche Schaltfläche geklickt wurde. Im Allgemeinen ist das preSubmit -Ereignis ist
konzeptionell gesehen ähnlich dem preSave -Ereignis und dient einem ähnlichen Zweck.
5.30.2. Tippen Sie
Anwendungsereignis
5.30.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
(Nur für Senden-Schaltflächen)
5.30.4. Version
XFA 2.1
67

Ereignisse 5
5.30.5. Beispiel
 68
Mit diesem Ereignis können Sie Formulardaten unmittelbar vor dem Senden der Daten ändern.
Sie können beispielsweise ein Skript auf dem preSubmit Ereignis erstellen, um die Datenmenge
zu scannen und den Benutzern eine Meldung anzuzeigen, die einschätzt, wie lange die Datenübergabe
dauern kann.

VERKNPFTE LINKS:
Ereignisse
Anwendungsereignisse
preSave-Ereignis
5.31. validate-Ereignis

5.31.1. Beschreibung
Wird initiiert, wenn Formularentwurf und Daten zum Formular zusammengeführt werden und
wenn ein Feld den Fokus verliert, z. B. wenn ein Benutzer klickt oder die Tabulatortaste drückt,
um ein Feld zu verlassen. Dieses Ereignis wird jedes Mal ausgelöst, wenn sich der Wert eines Feldes
ändert. Mit Berechnungen und Skripten, die auf das validate -Ereignis platziert werden, lassen
sich Überprüfungen durchführen, die spezifischeren Charakter haben als die über die Registerkarte
„Wert“ der Palette „Objekt“ verfügbaren Überprüfungen.

Berechnungen und Skripte im validate -Ereignis sind erforderlich, um true oder false
(in einem Format entsprechend der Skriptsprache) entsprechend einer Validierung, die erfolgreich
ist oder fehlschlägt, zurückzugeben, und darf nicht die Gesamtformularstruktur von Formular-
werten beeinträchtigen. Außerdem dürfen Berechnungen und Skripten nicht versuchen, dem
Formularbenutzer Rückmeldungen zu liefern, da der Benutzer das Formular möglicherweise nicht
in einer Client-Anwendung wie Acrobat verwendet.

HINWEIS: Da Überprüfungen am Inhalt des Formulars vorgenommen werden, kann damit die durch
Feldmuster vorgegebene Formatierung der Darstellung nicht überprüft werden.
5.31.2. Tippen Sie
Prozessereignis

Ereignisse
5.31.3. Unterstützung
Client-Anwendung Verfügbarkeit

Acrobat und Adobe Reader yes

HTML-Browser yes
5.31.4. Version
XFA 2.1
5.31.5. Beispiel
Mit diesem Ereignis können Sie Objektwerte überprüfen. Es eignet sich insbesondere für
Situationen, in denen Objektdaten mit bestimmten Regeln übereinstimmen müssen. Sie können
beispielsweise ein Skript auf dem validate -Ereignis erstellen, um sich zu vergewissern,
dass das Feld für die Gesamtkosten in einem Bestellformular keinen negativen Wert enthält.

Beispiele für die Verwendung des validate -Ereignisses finden Sie unter Felder zur Laufzeit als
„Erforderlich“ festlegeneingeben.

VERKNPFTE LINKS:
Ereignisse
Prozessereignisse
69

Skripterstellung mit FormCalc und JavaScript 6
6. Skripterstellung mit FormCalc und Java-
Script
 70
FormCalc und JavaScript richten sich an zwei unterschiedliche Anwendergruppen, es besteht aber
eine gewisse Überschneidung zwischen den jeweiligen integrierten Funktionen. In der folgenden
Tabelle sind alle verfügbaren FormCalc-Funktionen zusammengestellt; dabei ist jeweils angegeben,
ob JavaScript eine vergleichbare Funktion enthält.

Weitere Informationen zu FormCalc-Funktionen und deren Parametern finden Sie unter
Integrierte Funktionssyntax.

FormCalc-Funktion Beschreibung Entsprechende JavaScript-Methode

Abs(n1) Gibt den Betragswert eines
Zahlenwerts oder Ausdrucks
zurück.

Math.abs(n1)

Apr(n1, n2, n3) Gibt die jährliche
Gesamtbelastung für einen
Kredit zurück.

Kein

At(s1, s2) Findet die
Anfangs-Zeichenposition
einer Zeichenfolge innerhalb
einer anderen Zeichenfolge.

String.search(s1)

Avg(n1 [, n2...]) Wertet einen Satz von
Zahlenwerten und/oder
Ausdrücken aus und gibt den
Mittelwert der von null
verschiedenen Elemente
innerhalb dieses Satzes
zurück.

Kein

Ceil(n1) Gibt die ganze Zahl zurück,
die größer oder gleich einer
angegebenen Zahl ist.

Math.ceil(n1)

Choose(n1, s1 [, s2...]) Wählt einen Wert aus einem
gegebenen Satz von
Parametern.

Kein

Concat(s1 [, s2...]) Gibt die Verkettung von zwei
oder mehr Zeichenfolgen
zurück.

String.concat(s1, s2
[, s3 ...])

Skripterstellung mit FormCalc und JavaScript
Count(n1 [, n2...]) Wertet einen Satz von Werten
und/oder Ausdrücken aus und
gibt die Anzahl der von null
verschiedenen Elemente
innerhalb dieses Satzes
zurück.

Kein

CTerm(n1, n2, n3) Gibt die Anzahl der Perioden
zurück, die erforderlich sind,
damit eine Anlage mit einer
festen Verzinsung mit
Zinseszins auf einen Endwert
anwächst.

Kein

Datum() Gibt das aktuelle
Systemdatum als Anzahl von
Tagen seit Beginn der Epoche
zurück.

Date.getDate()
Das JavaScript-Datumsobjekt
verwendet die Epoche nicht als
Referenzpunkt.

Date2Num(d1 [, f1 [, k1]]) Gibt für eine angegebene
Datums-Zeichenfolge die
Anzahl der Tage seit Beginn
der Epoche zurück.

Das JavaScript-Datumsobjekt
verwendet die Epoche nicht als
Referenzpunkt.

DateFmt([n1 [, k1]]) Gibt für einen angegebenen
Datumsformat-Stil eine
Datumsformat-Zeichenfolge
zurück.

Kein

Decode(s1 [, s2]) Gibt die dekodierte Version
einer angegebenen
Zeichenfolge zurück.

Zum Teil unterstützt
JavaScript unterstützt nur
URL-kodierte Werte ohne
Escape-Zeichen.

Encode(s1 [, s2]) Gibt die kodierte Version
einer angegebenen
Zeichenfolge zurück.

Zum Teil unterstützt
JavaScript unterstützt nur
URL-kodierte Werte ohne
Escape-Zeichen.

Eval() Gibt den Wert einer
angegebenen
Formularberechnung zurück.

eval(s1)

Exists(v1) Bestimmt, ob der angegebene
Parameter eine gültige
Referenz-Syntax zu einem
vorhandenen Objekt ist.

Kein

FormCalc-Funktion Beschreibung Entsprechende JavaScript-Methode
71

Skripterstellung mit FormCalc und JavaScript 6

 72
Floor(n1) Gibt die größte Ganzzahl
zurück, die kleiner oder gleich
dem angegebenen Wert ist.

Math.floor(n1)

Format(s1, s2) Formatiert die angegebenen
Daten gemäß der
angegebenen
Musterformat-Zeichenfolge.

Kein

FV(n1, n2, n3) Gibt den Endwert von
Anlagebeträgen zurück, die
regelmäßig und in gleich
bleibender Höhe bei einem
konstanten Zinssatz
eingezahlt werden.

Kein

Get(s1) Lädt den Inhalt der
angegebenen URL herunter.

Kein

HasValue(v1) Ermittelt, ob der angegebene
Parameter eine gültige
Referenz-Syntax mit einem
von null verschiedenen, nicht
leeren oder vom Leerzeichen
verschiedenen Wert ist.

Kein

IPmt(n1, n2, n3, n4, n5) Gibt den Zinsbetrag zurück,
der in einer bestimmten
Zeitspanne für einen Kredit
gezahlt wurde.

Kein

IsoDate2Num(d1) Gibt bei Angabe einer gültigen
Datums-Zeichenfolge die
Anzahl der Tage seit Beginn
der Epoche zurück.

Kein

IsoTime2Num(d1) Gibt für eine angegebene
gültige Uhrzeit-Zeichenfolge
die Anzahl der Millisekunden
seit Beginn der Epoche
zurück.

Kein

Left(s1, n1) Extrahiert eine angegebene
Anzahl von Zeichen aus einer
Zeichenfolge, beginnend beim
ersten Zeichen auf der linken
Seite.

String.substring(n1, n2)

FormCalc-Funktion Beschreibung Entsprechende JavaScript-Methode

Skripterstellung mit FormCalc und JavaScript
Len(s1) Gibt die Anzahl der Zeichen
in einer angegebenen
Zeichenfolge zurück.

String.length

LocalDateFmt([n1 [, k1]
])

Gibt eine lokalisierte
Datumsformat-Zeichenfolge
mit dem angegebenen
Datumsformat-Stil zurück.

Kein

LocalTimeFmt([n1 [, k1]
])

Gibt eine lokalisierte
Uhrzeitformat-Zeichenfolge
mit dem angegebenen
Uhrzeitformat-Stil zurück.

Kein

Lower(s1 [, k1]) Wandelt alle Großbuchstaben
in einer angegebenen
Zeichenfolge in
Kleinbuchstaben um.

String.toLowerCase(s1)

Ltrim(s1) Gibt eine Zeichenfolge
zurück, bei der alle
Leerraum-Zeichen am Anfang
entfernt wurden.

Kein
Sie können normale
JavaScript-Ausdrücke verwenden,
um diesen Vorgang auszuführen.

Max(n1 [, n2...]) Gibt den Maximalwert der
von null verschiedenen
Elemente im angegebenen
Satz von Zahlen zurück.

Math.max(n1, n2)

Min(n1 [, n2...]) Gibt den Minimalwert der von
null verschiedenen Elemente
im angegebenen Satz von
Zahlen zurück.

Math.min(n1, n2)

Mod(n1, n2) Gibt den Modulus der
Division einer Zahl durch eine
andere zurück.

Verwenden Sie den modulo
(%)-Operator.

NPV(n1, n2 [, ...]) Gibt den Kapitalwert einer
Anlage auf der Grundlage
eines Diskontsatzes und einer
Folge von zukünftigen
periodischen Cashflows
zurück.

Kein

Num2Date(n1[, f1 [, k1]]
)

Gibt für eine angegebene
Anzahl von Tagen seit Beginn
der Epoche eine
Datums-Zeichenfolge zurück.

Kein

FormCalc-Funktion Beschreibung Entsprechende JavaScript-Methode
73

Skripterstellung mit FormCalc und JavaScript 6

 74
Num2GMTime(n1 [,f1 [, k1]
])

Gibt für eine angegebene
Anzahl von Millisekunden
seit Beginn der Epoche eine
GMT-Uhrzeit-Zeichenfolge
zurück.

Kein

Num2Time(n1 [,f1 [, k1]]
)

Gibt für eine angegebene
Anzahl von Millisekunden
seit Beginn der Epoche eine
Uhrzeit-Zeichenfolge zurück.

Kein

Oneof(s1, s2 [, s3...]) Gibt TRUE (1) zurück, wenn
sich ein Wert in einem
angegebenen Satz befindet,
bzw. FALSE (0), wenn dies
nicht der Fall ist.

Kein
Diese Funktion ähnelt der
String.search(s1) -Methode
und dem
String.match(-Ausdruck)
-Methode eingestellt.

Parse(s1, s2) Analysiert die angegebenen
Daten gemäß dem
angegebenen Musterformat.

Kein

Pmt(n1, n2, n3) Gibt die Höhe des
Rückzahlungsbetrags für
einen Kredit bei konstanten
Zahlungsbeträgen und
konstantem Zinssatz zurück.

Kein

Post(s1, s2 [, s3 [, s4
[, s5]]])

Sendet die angegebenen Daten
an die genannte URL.

Kein

PPmt(n1, n2, n3, n4, n5) Gibt den Tilgungsbetrag
zurück, der in einer
bestimmten Zeitspanne für
einen Kredit gezahlt wurde.

Kein

Put(s1, s2 [, s3]) Lädt die angegebenen Daten
zu der genannten URL hoch.

Kein

PV(n1, n2, n3) Gibt den Gegenwartswert
einer Anlage mit
regelmäßigen konstanten
Einzahlungen und
konstantem Zinssatz zurück.

Kein

FormCalc-Funktion Beschreibung Entsprechende JavaScript-Methode

Skripterstellung mit FormCalc und JavaScript
Rate(n1, n2, n3) Gibt den Zinssatz pro
Verzinsungsperiode zurück,
der benötigt wird, damit eine
Anlage mit Zinseszins in
einem gegebenen Zeitraum
von einem gegebenen
Gegenwartswert auf einen
Endwert anwächst.

Kein

Ref() Gibt eine Referenz auf ein
vorhandenes Objekt zurück.

Kein

Replace(s1, s2 [, s3]) Ersetzt innerhalb einer
angegebenen Zeichenfolge
alle Fundstellen einer
Zeichenfolge durch eine
andere.

String.replace(s1, s2)

Right(s1, n1) Extrahiert mehrere Zeichen
aus einer angegebenen
Zeichenfolge, beginnend beim
letzten Zeichen auf der
rechten Seite.

String.substring(n1, n2)

Round(n1 [, n2]) Wertet einen angegebenen
Zahlenwert oder Ausdruck
aus und gibt eine auf die
angegebene Anzahl von
Dezimalstellen gerundete
Zahl zurück. Verwenden Sie
für genauere Ergebnisse eine
ältere Markierung in xfa.xci.
Um zum Standardverhalten
zu wechseln, entfernen Sie die
ältere Markierung.

Math.round(n1)

Rtrim(s1) Gibt eine Zeichenfolge
zurück, bei der alle
Leerraum-Zeichen am Ende
entfernt wurden.

Kein
Sie können normale
JavaScript-Ausdrücke verwenden,
um diesen Vorgang auszuführen.

Space(n1) Gibt eine Zeichenfolge
zurück, die aus einer
angegebenen Anzahl von
Leerzeichen besteht.

Kein

FormCalc-Funktion Beschreibung Entsprechende JavaScript-Methode
75

Skripterstellung mit FormCalc und JavaScript 6

 76
Str(n1 [, n2 [, n3]]) Wandelt eine Zahl in eine
Zeichenfolge um. FormCalc
formatiert das Ergebnis auf die
angegebene Breite und rundet
auf die angegebene Zahl von
Dezimalstellen.

Zeichenfolge(n1)
oder
Number.toString(radix)

Stuff(s1, n1, n2 [, s2]) Fügt eine Zeichenfolge in eine
andere Zeichenfolge ein.

Kein

Substr(s1, n1, n2) Extrahiert einen Abschnitt aus
einer angegebenen
Zeichenfolge.

String.substring(n1, n2)

Sum(n1 [, n2...]) Gibt die Summe der von null
verschiedenen Elemente eines
gegebenen Satzes von Zahlen
zurück.

Kein

Term(n1, n2, n3) Gibt die Anzahl der Perioden
zurück, die erforderlich sind,
um mit konstanten
periodischen Einzahlungen
auf ein verzinstes Konto einen
angegebenen Endwert zu
erzielen.

Kein

Time() Gibt die aktuelle
Systemuhrzeit als Anzahl
von Millisekunden seit Beginn
der Epoche zurück.

Date.getTime()
Das JavaScript-Datumsobjekt
verwendet die Epoche nicht als
Referenzpunkt.

Time2Num(d1 [, f1 [, k1]]
)

Gibt für eine angegebene
Uhrzeit-Zeichenfolge die
Anzahl der Millisekunden seit
Beginn der Epoche zurück.

Kein

TimeFmt([n1 [, k1]]) Gibt ein Uhrzeitformat
in einem angegebenen
Uhrzeitformat-Stil zurück.

Kein

UnitType(s1) Gibt die Einheit einer
Maßangabe zurück. Eine
unitspan ist eine Zeichenfolge,
die aus einer Zahl und einer
nachfolgenden
Einheitenbezeichnung
besteht.

Kein

FormCalc-Funktion Beschreibung Entsprechende JavaScript-Methode

Skripterstellung mit FormCalc und JavaScript
VERKNPFTE LINKS:
FormCalc verwenden

UnitValue(s1 [, s2]) Gibt den Zahlenwert einer
Messung mit ihrer
zugeordneten Maßangabe
nach einer optionalen
Einheitenumwandlung
zurück.

Kein

Upper(s1 [, k1]) Wandelt alle Kleinbuchstaben
in einer angegebenen
Zeichenfolge in
Großbuchstaben um.

String.toUpperCase()

Uuid(n1) Gibt eine UUID-Zeichenfolge
(Universally Unique
Identifier) zurück, die als
Kennzeichnungsmethode
verwendet werden soll.

Kein

Within(s1, s2, s3) Gibt TRUE (1) zurück, wenn
der geprüfte Wert innerhalb
eines angegebenen Bereichs
liegt, bzw. FALSE (0), wenn
dies nicht der Fall ist.

String.search(s1)

WordNum(n1 [, n2 [, k1]]
)

Gibt die englischsprachige
Textentsprechung einer
angegebenen Zahl zurück.

Kein

FormCalc-Funktion Beschreibung Entsprechende JavaScript-Methode
6.1. FormCalc verwenden
FormCalc ist eine einfache, aber leistungsfähige Berechnungssprache, die nach dem Vorbild allgemein
gebräuchlicher Tabellenkalkulationssoftware entwickelt wurde. Diese Sprache soll die schnelle,
effiziente Gestaltung von Formularen ohne Kenntnis konventioneller Skripterstellungstechniken
oder Skriptsprachen ermöglichen. Mit Hilfe von wenigen integrierten Funktionen können Benutzer,
die FormCalc noch nicht kennen, in kurzer Zeit Formulare erstellen, welche den Endbenutzern
zeitaufwendige Berechnungen, Kontrollen und andere Überprüfungsmaßnahmen abnehmen.
Auf diese Weise haben Sie die Möglichkeit, für den Formularentwurf einen Satz Grundregeln
aufzustellen, anhand dessen das resultierende Formular auf die Daten reagieren kann, mit denen
es in Berührung kommt.
77

Skripterstellung mit FormCalc und JavaScript 6

 78
In Designer ist FormCalc die beim Erstellen von Skripten generell verwendete Standard-Skript-
sprache. Alternativ wird JavaScript eingesetzt. Informationen zur Festlegung der Standard-Skript-
sprache finden Sie unter Konfigurieren von Designer für die Skripterstellung.

WICHTIG: Wenn Sie Formulare für die Nutzung in einem serverbasierten Prozess erstellen (z. B. mit
Foms) und diese in HTML wiedergeben möchten, sollten Sie Ihre Berechnungen und Skripten in Java-
Script entwickeln. FormCalc-Berechnungen sind in HTML-Browsern nicht gültig und werden vor der
Wiedergabe in HTML aus dem Formular entfernt.

FormCalc behandelt jede neue Zeile im Skript-Editor als neu auszuwertenden Ausdruck.

VERKNPFTE LINKS:
JavaScript verwenden
6.2. Integrierte Funktionen verwenden
Die integrierten Funktionen, aus denen sich FormCalc zusammensetzt, decken eine umfangreiche
Palette von Bereichen ab: Mathematik, Datum und Uhrzeit, Zeichenketten, Finanzen, Logik und
Internet. Diese Bereiche entsprechen den Funktionalitätsarten, die in Formularen üblicherweise
genutzt werden. Die Funktionen sollen eine schnelle und einfache Bearbeitung von Formulardaten
auf zweckmäßige Weise ermöglichen.

Auf der elementarsten Ebene kann eine Berechnung aus einer einzelnen FormCalc-Funktion
bestehen. Diese einzelne FormCalc-Funktion kann aber weitere FormCalc-Funktionen als
Parameter nutzen.
6.2.1. So fügen Sie einem Objekt eine FormCalc-Funktion hinzu
Sie können eine FormCalc-Funktion jedem Formularentwurfsobjekt hinzufügen, das Berech-
nungen und Skripten zulässt, mit Ausnahme des Skriptobjekts.

1) Achten Sie darauf, dass im Designer-Arbeitsbereich die mehrzeilige Version des
Skript-Editors angezeigt wird.

2) Wählen Sie ein Feld in Ihrem Formular aus.

3) Wählen Sie in der Liste „Anzeigen“ das Ereignis „calculate“.

4) Klicken Sie auf das Symbol „Funktionen“ oder drücken Sie die Taste F10 zum Einblenden
einer Liste der FormCalc-Funktionen.

5) Wählen Sie die entsprechende Funktion und drücken Sie die Eingabetaste.

6) Ersetzen Sie die Standardnotation der Funktionssyntax durch Ihre eigenen Werte.

7) Zum Testen des Formulars klicken Sie auf die Registerkarte „PDF-Vorschau“.

Skripterstellung mit FormCalc und JavaScript
6.2.2. Integrierte Funktionssyntax
Jede FormCalc-Funktion verwendet eine bestimmte Syntax-Notation, die Sie zur korrekten Ausfüh-
rung der Funktion einhalten müssen. In dieser Tabelle werden die Elemente der Syntax-Notation in
allgemeiner Form beschrieben.

VERKNPFTE LINKS:
Basisberechnungen erstellen
FormCalc verwenden

Syntax-Notation Ersetzungswerte

d Eine gültige Datums-Zeichenfolge (Beispiel: 03/15/1996)

f Eine gültige Datumsformat-Zeichenfolge (Beispiel: MM/TT/JJJJ)

k Eine gültige Gebietsschema-Kennung (Beispiel: fr_FR)

n Ein gültiger Zahlenwert. Beachten Sie, dass der Bereich der gültigen Werte je nach
Funktion unterschiedlich ist.

S Eine gültige Maßeinheit (Beispiel: „mm“ für „Millimeter“).

v Eine gültige Referenz-Syntax.

n1, n2, n3 Alle Werte sind obligatorisch.

[[n [, k]]] Keiner der Werte ist obligatorisch, Sie können aber fakultativ entweder nur n oder
sowohl n als auch k angeben.

n1 [, n2 ...] n1 ist obligatorisch, Sie können aber fakultativ beliebig viele weitere Werte angeben.

d [, f [, k]] d ist obligatorisch, Sie können aber fakultativ entweder f oder sowohl f als auch k
angeben.
6.3. Basisberechnungen erstellen

6.3.1. Grundlagen zu Basisberechnungen
Einfache Ausdrücke sind die grundlegenden Elemente in der Skripterstellung. Diese Ausdrücke
verwenden keine integrierten Funktionen von FormCalc und sind niemals länger als eine Zeile.
Fügen Sie dem calculate-Ereignis eines bestimmten Feldes oder Objekts einfache Ausdrücke hinzu,
damit der Wert des Ausdrucks auf dem Formular ausgegeben wird.
79

Skripterstellung mit FormCalc und JavaScript 6
6.3.2. Beispiele für Basisberechnungen
 80
Die folgenden Beispiele zeigen einfache Ausdrücke:

2 "abc" 2 - 3 * 10 / 2 + 7

Jeder einfache Ausdruck wird zu einem einzelnen Wert ausgewertet. Dabei gilt die konventionelle
Reihenfolge der Operationen, auch wenn die Reihenfolge aus der Syntax der Ausdrücke nicht immer
offensichtlich ist. Beispielsweise liefern die folgenden Gruppen von Ausdrücken jeweils das gleiche
Ergebnis.

Wie aus der obigen Tabelle hervorgeht, besitzen alle FormCalc-Operatoren innerhalb von Ausdrücken
eine bestimmte Priorität. Die folgende Tabelle zeigt die Hierarchie der Operatoren im Überblick.

Alle vorherigen Beispiele sind gültige einfache Ausdrücke, die Sie in ein Formularfeld oder Objekt
einfügen können, das Berechnungen und Skripten akzeptiert. Angenommen, Sie erstellen in
Designer ein Formular mit einem einzelnen numerischen Feld und fügen dem Ereignis „calculate“
im Skript-Editor die folgende Berechnung hinzu.

Ausdruck Entspricht Ergebnis

"abc" "abc" abc

2 - 3 * 10 / 2 + 7 2 - (3 * 10 / 2) + 7 -6

(10 + 2) * (5 + 4) (10 + 2) * (5 + 4) 108

0 und 1 oder 2 > 1 (0 und 1) oder (2 >1) 1 (true)

(2 < 3) nicht (1 == 1) (2 < 3) nicht (1 == 1) 0 (false)

Priorität Operator

Höchste =

(Unär) - , + , not

* , /

+ , -

< , <= , > , >= , lt , le , gt , ge

== , <> , eq , ne

& , and

Niedrigste | , oder

Skripterstellung mit FormCalc und JavaScript
Wenn Sie anschließend die Registerkarte „PDF-Vorschau“ zum Anzeigen des ausgefüllten Formu-
lars wählen, erscheint in dem Textfeld der Wert des einfachen Ausdrucks.

Falls der Wert in der PDF-Vorschau nicht angezeigt wird, vergewissern Sie sich, dass der einfache
Ausdruck im calculate-Ereignis des Formularentwurfsobjekts erscheint. Sie müssen außerdem
sicherstellen, dass Designer und Acrobat ordnungsgemäß installiert sind.

VERKNPFTE LINKS:
FormCalc verwenden
JavaScript verwenden
81

Skripterstellung mit FormCalc und JavaScript 6
6.4. JavaScript verwenden
 82
Um Formulardesignern mehr Flexibilität und Skripterstellungsmöglichkeiten bieten zu können,
wird in Designer die Verwendung von JavaScript (Version 1.6 oder älter) für jedwede Aspekte der
Skripterstellung unterstützt.

Mit JavaScript vertraute Formulardesigner können ihre Kenntnisse in Designer anwenden. Designer
stellt zahlreiche Eigenschaften und Methoden zur Verfügung, die JavaScript so erweitern, dass Sie
damit auf Feld- und Objektwerte zugreifen können. Diese Eigenschaften und Methoden ermöglichen
Ihnen in Verbindung mit der Referenzsyntax von Designer eine einfache Manipulation von Formular-
werten und -daten.

HINWEIS: Im Skript-Editor gibt es für Skripten, die mit JavaScript erstellt wurden, keine Möglichkeit
zur Überprüfung der Syntax auf Fehler. Es werden keine Anweisungsende-Optionen für standardmäßige
JavaScript-Objekte oder -Methoden angezeigt.

VERKNPFTE LINKS:
Skripten mit JavaScript erstellen
6.5. Skripten mit JavaScript erstellen
Die Skripterstellung in Designer mit JavaScript ist der JavaScript-Erstellung in anderen Anwendungen
ähnlich. Sie können Ihre Vorkenntnisse zu JavaScript-Konzepten anwenden sowie im Designer-Skript-
objekt JavaScript-Funktionen einsetzen und die JavaScript-Sprachfunktionalität nutzen.

Dabei ist zu beachten, dass sich JavaScript-Vorkenntnisse zwar übertragen lassen, Sie jedoch auch
wissen müssen, wie eine Referenzsyntax in Designer aufgebaut wird, damit Sie JavaScript in Ihren
Formularentwürfen effektiv anwenden können. Insbesondere müssen Sie wissen, wie Sie die
XML-Formularobjektmodell-Referenzsyntax korrekt einsetzen, um im Formularentwurf auf
Objekte zuzugreifen.

In der folgenden Tabelle werden die Hauptkonzepte zum Entwickeln von Skripten in JavaScript für
Designer erläutert. Darüber hinaus erfahren Sie, wo Sie weitere Informationen zu den einzelnen
Konzepten in der Designer-Hilfe finden können.

Hauptkonzept Weitere Informationsquellen

Referenzen zu Objekteigenschaften und -werten,
einschließlich der Verwendung der resolveNode
-Methode erstellen.

Objekteigenschaften und -werte referenzieren
resolveNode
So erstellen Sie Berechnungen und Skripten mit dem
Anweisungsende

Verwenden der Host- und Ereignismodelle zum Testen
und Debugging von Formularen

Berechnungen und Skripten testen und debuggen
Objekteigenschaften und -werte referenzieren

Verwenden des Skriptobjekts zur Wiederverwendung
existierender JavaScript-Funktionen

JavaScript-Funktionen erstellen und wiederverwenden

Skripterstellung mit FormCalc und JavaScript
Zusätzlich zu den Ressourcen in der Designer-Hilfe enthält das Developer Center ausführliche Skripter-
stellungsressourcen und Dokumentation.

VERKNPFTE LINKS:
Strikte Scoping-Regeln in JavaScript erzwingen
So fügen Sie einem Objekt ein JavaScript-Skript hinzu
JavaScript verwenden
6.6. Strikte Scoping-Regeln in JavaScript erzwingen
Bei der Arbeit mit JavaScript in Formularen ist es wichtig, Objekte und Variablen stets im beabsich-
tigten Scope (Gültigkeitsbereich) zu deklarieren. Werden Objekte oder Variablen unnötigerweise
global deklariert, kann dies zu Beeinträchtigungen der Leistung führen.

In Designer 8.1 wurden strikte Scoping-Regeln eingeführt, um die Laufzeit und Speichernutzung
von Formularen zu optimieren. In Designer sind strikte Scoping-Regeln für neue Formulare stan-
dardmäßig aktiviert. Für alte Formulare ist eine Option zum Aktivieren strikter Scoping-Regeln
verfügbar.
6.6.1. Funktionsweise von Scopes in JavaScript
Scopes wirken nach außen hin. Dies bedeutet, dass der gesamte in geschweifte Klammern ({}) einge-
schlossene Ausdruck über die geschweiften Klammern hinaus blicken kann. Ausdrücke außerhalb
der geschweiften Klammern können jedoch nicht auf den in Klammern eingeschlossenen Ausdruck
zugreifen.

Im folgenden Beispiel öffnet die erste geschweifte Klammer den Scope der Funktion, während die
zweite ihn schließt. Sämtliche Angaben zwischen den geschweiften Klammern befinden sich im
Scope von foo ().
83

http://www.adobe.com/go/learn_lc_devnet

Skripterstellung mit FormCalc und JavaScript 6

 84
Der Bereich im folgenden Beispiel ist gültig, weil var nFooVar = nOutsideVar in eckigen
Klammern var nOutsideVar = 2 außerhalb der geschweiften Klammern erkennt.

Im Gegensatz dazu zeigt folgendes Beispiel einen ungültigen Bereich, da var nOutsideVar =
nFooVar nicht auf var nFooVar =4 innerhalb der geschweiften Klammern zugreifen kann.

Bei der Skripterstellung beschreiben Scopes Skriptelemente, die auf andere Elemente zugreifen
können. Bei diesen Skriptelementen kann es sich um Variablen oder Funktionen handeln.
6.6.2. XML-Scope
In Formularentwürfen geht es bei Scopes um die Hierarchie. Um zum Beispiel auf das Teilformular
inside innerhalb der folgenden XML-Quelle zuzugreifen, müssen Sie outside.inside schreiben.

<subform name=“outside”>
<subform name=“inside”>
…
</subform> </subform>

Sie schreiben nicht inside.outside, da Sie zuerst auf das äußere Teilformular und erst dann auf unter-
geordnete Ebenen zugreifen müssen.

Skripterstellung mit FormCalc und JavaScript
6.6.3. SOM-Ausdrücke und Scopes
In Formularen, die für Acrobat Adobe Reader 8.1 bestimmt sind, muss das Scoping für
SOM-Ausdrücke wie im nachstehenden Beispiel erfolgen:

<subform name="a">

<subform name="b"/>

In Formularen, die für Acrobat oder Adobe Reader 8.0 bestimmt sind, gibt der SOM-Ausdruck
a.b.a das Teilformular azurück. In Formularen, die für Acrobat oder Adobe Reader 8.1 bestimmt
sind, gibt der SOM-Ausdruck a.b. a null zurück, da das Teilformular b kein untergeordnetes
Element mit dem Namen ahat. In Acrobat oder Adobe Reader 9.0 oder höher gibt der Ausdruck
einen Fehler zurück, da a kein untergeordnetes Element von bist.

In Acrobat oder Adobe Reader 8.1 werden Funktionen und Variablen im Skript einer Node nicht
zu globalen Funktionen oder Variablen (Skriptobjekte stellen eine Ausnahme dar). Beispiel:

<field name="field1">

event activity="initialize">

<script contentType="application/x-javascript">

// Funktionsbalken() ist Bereich von field1.initialize; nicht außerhalb <event
activity="initialize"> Bereich kann hier erkennen (in 8.1)

function bar()

{

return "bar";

}

</script>

</event>

/field>

field name="field2">

<event activity="click">

<script contentType="application/x-javascript">

field1.bar();

</script>

</event>
85

Skripterstellung mit FormCalc und JavaScript 6

 86
</field>

Bei Auswahl von field 2 in einem Formular, das für Acrobat oder Adobe Reader 8.0 vorgesehen
ist, führt die Funktion bar() aus.

Bei Auswahl von field 2 in einem Formular, das für Acrobat oder Adobe Reader 8.1 vorgesehen
ist, wird die Funktion bar() nicht ausgeführt. Der Grund dafür ist, dass die Funktion bar() nur
innerhalb des initialisierten Skripts von feld 1verfügbar ist.
6.6.4. Scoping und Skriptobjekte
Skriptobjekte weisen einen globalen Scope auf. Daher kann der Zugriff darauf von einer beliebigen
Position aus durch einen beliebigen Benutzer erfolgen. Wenn eine Methode auf field1.initi-
alize und field2.click zugreifen soll, müssen Sie die Methode in ein Skriptobjekt platzieren.
Bei striktem Scoping können Sie nicht bar() von überall überall in einem Formular aufrufen.
Es wird außerdem ein Laufzeitfehler angezeigt, der anzeigt, dass die Funktion bar() nicht gelöst
werden konnte. Das Skriptmodul hat nach bar() innerhalb des Bereichs gesucht, auf den Sie
Zugriff haben, und wurde nicht gefunden.
6.6.5. Scoping und Zielversion
Bei Verwendung des strikten Scopings erzielen Sie Verbesserungen der Leistung in Formularen, die
für Acrobat oder Adobe Reader 8.1 und höher bestimmt sind. Vermeiden Sie striktes Scoping in
Formularen, die für ältere Versionen von Acrobat oder Adobe Reader bestimmt sind. Andernfalls
variiert die Funktionalität der Skripten in den Formularen. Erstellen Sie eine Sicherungskopie von
vorhandenen Formularen, bevor Sie das strikte Scoping aktivieren. Überprüfen Sie das Skript
anschließend. Wenn Sie das strikte Scoping aktivieren und danach die Zielversion auf eine Version
vor Acrobat oder Adobe Reader 8.1 ändern, werden Warnungen angezeigt.
6.6.6. Verwendungsbereich des Scopings
Wurde bei Formularen für Acrobat oder Adobe Reader ab Version 8.1 das strikte Scoping aktiviert,
werden deklarierte JavaScript-Variablen nach der Ausführung des jeweiligen Skripts freigegeben.
Bei Formularen für Acrobat oder Adobe Reader ab Version 9.0 gibt das strikte Scoping nicht alle
JavaScript-Variablen frei. Eine Ausnahme bildet das erneute Zusammenführen oder Importieren
von neuen Daten.

Die Verbesserung der Leistung in Verbindung mit strikten Scoping-Regeln trifft für Formulare zu,
die für Acrobat oder Adobe Reader 8.1 und höher bestimmt sind. Bei Formularen für ältere Versi-
onen als Acrobat oder Adobe Reader 8 sollte von der Anwendung strikter Scoping-Regeln abgesehen
werden. Die Skripten verhalten sich möglicherweise anders oder sind nicht funktionsfähig.

Skripterstellung mit FormCalc und JavaScript
6.6.7. So aktivieren Sie das strikte Scoping
1) Wählen Sie „Datei“ > „Formulareigenschaften“ aus und klicken Sie auf die Registerkarte
„Runtime“.

2) Wählen Sie „Strikte Scoping-Regeln in JavaScript erzwingen“, wenn die Option zur Verfügung
steht, und klicken Sie dann auf „OK“.

HINWEIS: Wenn die Option zum Erzwingen strikter Scoping-Regeln auf der Registerkarte
„Runtime“ nicht verfügbar ist, dann ist striktes Scoping bereits aktiviert.

VERKNPFTE LINKS:
JavaScript verwenden
So fügen Sie einem Objekt ein JavaScript-Skript hinzu
6.7. So fügen Sie einem Objekt ein JavaScript-Skript hinzu
Sie können jedem Formularentwurfsobjekt, das Berechnungen und Skripten zulässt, ein Java-
Script-Skript hinzufügen. Dies gilt auch für das Skriptobjekt.

1) Achten Sie darauf, dass im Designer-Arbeitsbereich die mehrzeilige Version des
Skript-Editors angezeigt wird.

2) Wählen Sie ein Feld in Ihrem Formular aus. Fügen Sie dem Formularentwurf beispielsweise
ein neues Textfeld hinzu.

3) Wählen Sie in der Liste „Anzeigen“ ein gültiges Ereignis aus. Beispiel: Wählen Sie für das neue
Textfeld das docReady -Ereignis auswählen.

4) Wählen Sie in der Liste "Ausführen am", wo das Skript ausgeführt werden soll. Beispiel:
Wählen Sie für das neue Textfeld „Client“ aus.

5) Klicken Sie auf das Symbol „Funktionen“ oder drücken Sie die Taste F10 zum Einblenden
einer Liste der JavaScript-Funktionen.

6) Wählen Sie die gewünschte Funktion und drücken Sie die Eingabetaste.

7) Ersetzen Sie die Standardnotation der Funktionssyntax durch Ihre eigenen Werte. Alternativ
können Sie im Skript-Editor im Feld „Skriptquelle“ ein Skript manuell eingeben. Fügen Sie
in dem neuen Textfeld beispielsweise das folgende JavaScript zum Feld „Skriptquelle“ hinzu:

this.border.fill.color.value = "255,0,0";

8) Zum Testen des Formulars klicken Sie auf die Registerkarte „PDF-Vorschau“. Bei Anzeige des
Formulars auf der Registerkarte „PDF-Vorschau“ sollte das Textfeld für das neue Schaltflä-
chenobjekt rot dargestellt sein.

VERKNPFTE LINKS:
JavaScript verwenden
87

Variablen 7
7. Variablen
 88
Sie können in Designer Formularvariablen definieren, um spezifische Informationen an einer zent-
ralen, zugänglichen Position zu speichern. Eine Variable dient üblicherweise als Platzhalter für Text,
den Sie zu einem späteren Zeitpunkt eventuell ändern müssen. Formularvariablen in Designer sind
immer vom Typ „String“. Beispielsweise kann in einer Variablen der Titel eines Meldungsdialog-
felds gespeichert werden. Wenn der Text geändert werden muss, müssen Sie lediglich das betref-
fende Formular bzw. die Vorlage öffnen und den Text mit Hilfe der Variablendefinition einmalig
aktualisieren. Designer fügt den neuen Text automatisch an allen Stellen ein, an denen die eingefügte
Variable steht.

Denken Sie daran, dass Formularvariablen außerhalb des Skript-Editors definiert werden und
anders als Skriptvariablen, die Sie in einem bestimmten FormCalc- oder JavaScript-Skript erstellen,
für Skripten in allen Objekten eines Formulars zugänglich sind.

Sie können Variablen ohne Eingabe von Skript-Code erstellen, anzeigen und löschen. Sie müssen
allerdings Skript-Code eingeben, um auf die von Variablen gespeicherten Werte zuzugreifen und
diese zu bearbeiten oder um die Werte auf Objekte in Ihrem Formular anzuwenden.

HINWEIS: Die Werte von Formularvariablen werden jedes Mal zurückgesetzt, wenn Sie ein Formular
öffnen.

Bevor Sie eine Variable erstellen, legen Sie den Namen der Variablen fest sowie den Text, den sie
enthalten soll. Variablendefinitionen werden mit dem Formular bzw. mit der Vorlage gespeichert.
7.1. Variablen benennen
Zur Laufzeit treten Namenskonflikte auf, wenn die Namen von Variablen mit den Namen von
Eigenschaften oder Methoden des XML Form Object Model bzw. mit Feldnamen des Formularent-
wurfs identisch sind. Diese Konflikte können dazu führen, dass Skripten unerwartete Werte zurück-
geben. Daher ist es wichtig, jeder Variablen einen eindeutigen Namen zuzuweisen. Dazu einige
Beispiele:

• Verwenden Sie den Variablennamen fieldWidth und fieldHeight anstatt x und y.

• Verwenden Sie den Formentwurfsobjektnamen clientName anstatt name.

HINWEIS: Bei Variablennamen ist die korrekte Groß-/Kleinschreibung wichtig; sie sollten
außerdem keine Leerzeichen enthalten.

Variablen
7.2. So definieren Sie Textvariablen
1) Wählen Sie „Datei“ > „Formulareigenschaften“.

2) Klicken Sie auf der Registerkarte „Variablen“ auf „Neu (Einfügen)“ .

3) Geben Sie in der Liste „Variablen“ einen eindeutigen Namen für die Variable ein und drücken
Sie die Eingabetaste. Bei Variablennamen ist die korrekte Groß-/Kleinschreibung wichtig;
sie sollten außerdem keine Leerzeichen enthalten.

4) Klicken Sie einmal in das Feld auf der rechten Seite und geben Sie den Text ein, den Sie der
Variablen zuweisen möchten.

Die Variable erscheint in der Palette „Hierarchie“ auf der Formularebene.

A. Neue Formularvariable
7.3. So definieren Sie Textvariablen
1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.

2) Klicken Sie auf der Registerkarte „Variablen“ auf „Neu (Einfügen)“ .

3) Geben Sie in der Liste „Variablen“ einen eindeutigen Namen für die Variable ein und drücken
Sie die Eingabetaste. Bei Variablennamen ist die korrekte Groß-/Kleinschreibung wichtig;
sie sollten außerdem keine Leerzeichen enthalten.
89

Variablen 7

 90
4) Klicken Sie einmal in das Feld auf der rechten Seite und geben Sie den Text ein, den Sie der
Variablen zuweisen möchten.

Die Variable erscheint in der Palette „Hierarchie“ auf der Formularebene.

A. Neue Formularvariable
7.4. So zeigen Sie die Definition einer Textvariablen an
1) Wählen Sie „Datei“ > „Formulareigenschaften“.

2) Klicken Sie auf die Registerkarte „Variablen“ und wählen Sie die Variable in der Variablenliste
aus. Der zugehörige Text wird in dem Feld auf der rechten Seite angezeigt.
7.5. So zeigen Sie die Definition einer Textvariablen an
1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.

2) Klicken Sie auf die Registerkarte „Variablen“ und wählen Sie die Variable in der Variablenliste
aus. Der zugehörige Text wird in dem Feld auf der rechten Seite angezeigt.

Variablen
7.6. So löschen Sie Textvariablen
1) Wählen Sie „Datei“ > „Formulareigenschaften“.

2) Wählen Sie auf der Registerkarte „Variablen“ die Variable und klicken Sie auf „Löschen“ .
7.7. So löschen Sie Textvariablen
1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.

2) Wählen Sie auf der Registerkarte „Variablen“ die Variable und klicken Sie auf „Löschen“ .
7.8. Variablen in Berechnungen und Skripten verwenden
Nach dem Erstellen von Formularvariablen genügt es, den Variablennamen in Ihren Berechnungen
und Skripten zu referenzieren, um den Wert der Variablen zu erhalten.

WICHTIG: Bei der Benennung von Variablen sollten Sie Namen vermeiden, die mit den Namen von
Eigenschaften, Methoden oder Objekten des XML Form Object Model identisch sind.

Weitere Informationen zu den Eigenschaften, Methoden und Objekten des XML Form Object
Model finden Sie in der Skriptreferenz.

Erstellen Sie beispielsweise die folgenden Definitionen für Formularvariablen.

In FormCalc können Sie auf die Variablenwerte auf die gleiche Weise zugreifen wie auf Feld- und
Objektwerte. In diesem Beispiel werden die Werte drei getrennten Feldern zugewiesen:

TextField1 = firstName
TextField2 = lastName
NumericField1 = age

Variablenname Wert

firstName Tony

lastName Blue

age 32
91

%20http:/www.adobe.com/go/learn_aemforms_scriptingBasics_62w

Variablen 7

 92
Sie können Variablen auf die gleiche Weise auch in FormCalc-Funktionen verwenden, wie dieses
Beispiel zeigt.

Concat("Dear ", firstName, lastName)

In JavaScript referenzieren Sie Variablenwerte mit der .value Eigenschaft anstatt der
.rawValue -Eigenschaft, die für Feld- und Objektwerte vorgesehen ist. Dazu ein Beispiel:

TextField1.rawValue = firstName.value;

HINWEIS: Wenn Sie Formularvariablen mit Skripts in XFA-Formularen verwenden und ändern,
zeigt die Dokumentmeldungsleiste in Acrobat und Adobe Reader eventuell eine Warnung bezüglich
des Signaturvalidierungsstatus an. Diese weist darauf hin, dass die Gültigkeit der Signatur aufgrund
nachfolgender Änderungen am Dokument unbekannt ist.

Objekte in Berechnungen und Skripten referenzieren
8. Objekte in Berechnungen und Skripten
referenzieren
FormCalc-Berechnungen und JavaScript-Skripten unterliegen bei der Strukturierung von Code
zwar jeweils spezifischen Regeln, aber wenn es um den Zugriff auf Formularobjekteigenschaften und
-werte geht, stützen sie sich auf die gleiche Referenz-Syntax. Das XML-Formularobjektmodell bietet
über eine Namenskonvention, bei der alle Objekte, Eigenschaften und Methoden jeweils durch
ein Punkt (.) Zeichen voneinander getrennt sind, eine strukturierte Möglichkeit, auf Objekteigen-
schaften und -werte zuzugreifen.

Jede Referenzsyntax weist in der Regel eine in folgende Abschnitte unterteilte Struktur auf:

• Die Namen der übergeordneten Objekte in der Formularhierarchie, die zur Navigation
zu einem bestimmten Feld oder Objekt dient. Mit den beiden Paletten „Hierarchie“ und
„Datenansicht“ können Sie die Position eines Objekts im Verhältnis zu anderen Objekten
im Formular und in zugehörigen Daten ermitteln.

• Der Name des Objekts, das Sie referenzieren möchten.

• Der Name der Eigenschaft oder Methode, auf die Sie zugreifen möchten. Dieser Abschnitt
enthält möglicherweise auch Objekte des XML-Formularobjektmodells, die in der Struktur
vor der Eigenschaft oder Methode auftreten, aber in der Palette „Hierarchie“ nicht als Objekte
aufgeführt werden.

In der folgenden Abbildung sehen Sie die Referenz-Syntax für den Zugriff auf den Wert eines Textfelds
in einem Formularentwurf. Dabei gelten die folgenden Konventionen für die Objektbenennung:

A.
Formularhierarchie-Objekte

B.
Objektname

C.
Name der Eigenschaft oder Methode

HINWEIS: Das Teilformularobjekt, welches die erste Seite eines neuen Formulars darstellt, ist standard-
mäßig unbenannt. In der obigen Referenzsyntax wird das unbenannte Teilformular als #subform-
bezeichnet.
93

Objekte in Berechnungen und Skripten referenzieren 8

 94
Die Notationsstruktur der Referenz-Syntax hängt immer von der spezifischen Situation ab.
Beispielsweise ist eine vollständig qualifizierte Referenz-Syntax für alle Situationen geeignet.
In einigen Fällen können Sie die Syntax aber durch eine verkürzte Referenz-Syntax oder einen
Referenz-Syntax-Kurzbefehl etwas übersichtlicher gestalten.
8.1. Objekteigenschaften und -werte referenzieren
Für die Referenz-Syntax, über die Sie auf Objekteigenschaften und -werte zugreifen bzw. diese
ändern, stehen zwei Varianten zur Auswahl:

Vollständig qualifiziert
Die Referenzsyntax enthält die gesamte Objekthierarchie, angefangen mit dem xfa Stamm-
knoten. Die vollständig qualifizierte Syntax greift präzise auf die Eigenschaft oder den Wert
eines Objekts zu, unabhängig davon, wo sich die Berechnung oder das Skript befindet, die bzw.
das die Referenz-Syntax enthält.

Abgekürzt
Die Referenz-Syntax ist entweder wegen der relativen Position der Berechnung oder des
Skripts, die bzw. das die Referenz-Syntax und die Objektsyntaxreferenzen enthält, abgekürzt,
oder weil Kurzbefehle verwendet werden. Eine abgekürzte Referenz-Syntax lässt sich zwar
schneller erstellen, sie hat aber auch den Nachteil, dass sie nur so lange funktioniert, wie die
Position der Objekte im Verhältnis zueinander unverändert bleibt.

In der folgenden Abbildung wird die Hierarchie eines Musterbestellformulars dargestellt.

Objekte in Berechnungen und Skripten referenzieren
Die Abbildung zeigt eine vollständig qualifizierte Referenzsyntax für FormCalc und JavaScript,
die zum Zugriff auf den Wert des txtCondition Felds dient. Diese Referenz-Syntax könnte
als Teil einer Berechnung oder eines Skriptes für ein beliebiges Objekt des Formulars eingesetzt
werden.

A.
Stamm-Node

B.
Modell

C.
Stamm-Node des Formularentwurfs

D.
Seitenobjekt

E.
Name des Teilformulars

F.
Objektname

G.
Name der Eigenschaft oder Methode

HINWEIS: Obwohl die Referenz-Syntax sowohl von FormCalc als auch von JavaScript verwendet
wird, müssen Sie die für die beiden Skriptsprachen geltenden Konventionen beachten. Beispiels-
weise kann die im obigen Beispiel angegebene Referenzsyntax ohne Änderungen in FormCalc
eingesetzt werden. Für JavaScript müssten Sie jedoch ein Semikolon (;) am Ende einfügen.

Wenn sich zwei Objekte im selben Container befinden, z.B. in einem Teilformular, haben sie
denselben Kontext. Wenn Objekte in demselben Kontext vorkommen, können Sie eine abge-
kürzte Referenz-Syntax verwenden, die sich nur aus dem Namen des Objekts gefolgt von
der Eigenschaft oder Methode, auf die Sie zugreifen möchten, zusammensetzt. Beim obigen
Beispiel würde die folgende abgekürzte Referenzsyntax auf den Wert des txtCondition
Felds in allen Feldern im total Unterformular zugreifen:

txtCondition.rawValue
95

Objekte in Berechnungen und Skripten referenzieren 8

 96
Wenn sich zwei Objekte in unterschiedlichen Containern befinden, haben sie nicht denselben
Kontext. In diesem Fall können Sie zwar ein abgekürzte Referenz-Syntax verwenden, aber die
Syntax muss mit dem Namen des obersten Container-Objekts beginnen, welches die beiden
Objekte nicht gemein haben. Bei der obigen Hierarchie würde die folgende abgekürzte
Referenzsyntax auf den Wert des address Felds vom txtCondition Feld aus zugreifen:

header.address.rawValue

Aufgrund der Struktur des XML Form Object Model treten einige Objekteigenschaften und
-methoden bei untergeordneten Objekten der Objekte im Formular auf. Diese untergeord-
neten Objekte kommen nur als Teil des XML-Formularobjektmodells und nicht in den beiden
Paletten „Hierarchie“ und „Datenansicht“ vor. Wenn Sie auf diese Eigenschaften und
Methoden zugreifen möchten, müssen Sie die untergeordneten Objekte in die Referenz-Syntax
einschließen. Beispielsweise wird über die folgende Referenzsyntax die QuickInfo für das
txtCondition Feld festgelegt:

txtCondition.assist.toolTip.value = "Conditions of purchase." // FormCalc
txtCondition.assist.toolTip.value = "Conditions of purchase."; // JavaScript

Weitere Informationen zu den Formularobjektmodellen und ihrer Struktur finden Sie unter
Skriptreferenz bezeichnet.

VERKNPFTE LINKS:
Objekte in Berechnungen und Skripten referenzieren
Unbenannte und wiederholte Objekte referenzieren
Aktuelles Objekt referenzieren
Referenz-Syntax-Kurzbefehle für FormCalc
8.2. Unbenannte und wiederholte Objekte referenzieren
In Designer können Sie sowohl unbenannte Objekte als auch mehrere gleichnamige Objekte
erstellen. Ferner können Sie Berechnungen und Skripte erstellen, um auf Eigenschaften und Werte
unbenannter Objekte zuzugreifen und diese zu ändern, indem Sie das Nummernzeichen (#) und
Objektwerte für das Vorkommen mit den eckigen Klammern ([]) verwenden. FormCalc interpre-
tieert das Nummernzeichen (#) und Zeichen in eckigen Klammern[]) korrekt, aber JavaScript
kann das nicht. Um auf den Wert eines Textfelds in einer Situation zuzugreifen, in der das
Nummernzeichen (#) oder die eckigen Klammern ([]) mit JavaScript vorkommen, müssen
Sie unter Verwendung von JavaScript die resolveNode -Methode in Kombination mit einer
vollständig qualifizierte Referenzsyntax oder einer abgekürzten Referenzsyntax verwenden.

Wenn Sie beispielsweise ein neues leeres Formular erstellen, ist der Name des Teilformulars, welches
die Seite des Formulars darstellt, standardmäßig ein unbenanntes Teilformular mit dem Vorkom-
menswert von 0. In der folgenden Abbildung sehen Sie die Formularhierarchie bei einem neuen
Formular mit standardmäßiger Objektbenennung.

http://www.adobe.com/go/learn_aemforms_scriptingReference_62

Objekte in Berechnungen und Skripten referenzieren
Das unbenannte Teilformular, welches die erste Seite des Formulars darstellt, hat die Vorkommens-
nummer 0. In dieser Situation greifen die beiden folgenden Referenz-Syntaxen auf den Wert des
Textfelds zu, das in der Formularhierarchie über einem neuen Formular liegt und für das standard-
mäßige Namenskonventionen gelten:

xfa.form.form1.#subform.TextField1.rawValue
xfa.form.form1.#subform[0].TextField1.rawValue

HINWEIS: Wenn für ein Objekt kein Vorkommenswert angegeben wurde, greift die Referenz-Syntax
standardmäßig auf das erste Vorkommen dieses Objekts zu.

FormCalc erkennt die oben angegebene vollständig qualifizierte Referenz-Syntax und wertet sie
korrekt aus. Wenn Sie mit JavaScript auf denselben Wert zugreifen möchten, müssen Sie eine der
folgenden Varianten der resolveNode -Skriptmethode verwenden:

xfa.resolveNode("xfa.form.form1.#subform.TextField1").rawValue;
xfa.resolveNode("xfa.form.form1.#subform[0].TextField1").rawValue;

Wenn Sie einem Formular eine neue Seite hinzufügen, ist das Teilformular, welches die neue Seite
darstellt, standardmäßig unbenannt. Der Vorkommenswert des neuen Teilformulars wird allerdings
auf 1eingestellt. Sie können das neue unbenannte Teilformular mit einer ähnlichen Referenz-Syntax
wie der obigen angeben:

xfa.form.form1.#subform[1].TextField1.rawValue // FormCalc
xfa.resolveNode("xfa.form.form1.#subform[1].TextField1").rawValue;
// JavaScript

HINWEIS: Zu den im Skript-Editor verfügbaren Anweisungsende-Optionen gehören unbenannte
Objekte am Anfang der Liste. Objekte mit mehreren Vorkommenswerten werden in der Liste nur
einmal aufgeführt. Der Listeneintrag bezieht sich auf das erste Vorkommen des Objekts. Wenn Sie
anstelle des ersten Vorkommenswerts einen anderen Vorkommenswert abrufen möchten, müssen Sie
diesen Wert manuell der Referenz-Syntax hinzufügen.
97

Objekte in Berechnungen und Skripten referenzieren 8

 98
Sie können die resolveNode -Methode verwenden, um Objekte innerhalb anderer Referenz-
syntax-Anweisungen zureferenzieren. Dadurch kann der Skripterstellungsaufwand, der zum Refe-
renzieren eines bestimmten Objekts, einer bestimmten Eigenschaft oder einer bestimmten Methode
erforderlich ist, erheblich reduziert werden. Beispielsweise ließe sich die Referenz-Syntax, die auf ein
Textfeld auf der zweiten Formularseite verweist, auf die folgende Anweisung kürzen:

xfa.form.form1.resolveNode("#subform[1].TextField1").rawValue;
// JavaScript

Weitere Informationen zur resolveNode -Methode finden Sie unter resolveNode.

VERKNPFTE LINKS:
Objekte in Berechnungen und Skripten referenzieren
Objekteigenschaften und -werte referenzieren
Aktuelles Objekt referenzieren
Referenz-Syntax-Kurzbefehle für FormCalc
8.3. Aktuelles Objekt referenzieren
Wenn Sie die Eigenschaften oder Werte des aktuellen Objekts mit Hilfe von Berechnungen oder
Skripten ändern möchten, die an das Objekt selbst angehängt sind, bieten sowohl FormCalc als auch
JavaScript eindeutige Kurzbefehle, mit denen sich der Umfang der Referenz-Syntax verringern lässt.
In FormCalc wird das Nummernzeichen ($) verwendet, um das aktuelle Objekt zu kennzeichnen
und JavaScript verwendet hierzu das Schlüsselwort this.

Beispielsweise gibt die folgende Referenz-Syntax den Wert des aktuellen Objekts zurück:

$ // FormCalc
this.rawValue // JavaScript

Sie können die Verknüpfung für das Dollar-Zeichen ($) verwenden und den Suchbegriff this,
um den Namen des aktuellen Objekts zu ersetzen, wenn auf Objekteigenschaften in Berechnungen
und Skripten zugegriffen wird. Beispielsweise wird über die folgende Referenz-Syntax die mit dem
aktuellen Objekt verbundene QuickInfo ersetzt:

$.assist.toolTip.value = „Das ist ein QuickInfo-Text.“ // FormCalc
this.assist.toolTip.value = „Das ist ein QuickInfo-Text.“; // JavaScript

VERKNPFTE LINKS:
Objekte in Berechnungen und Skripten referenzieren
Objekteigenschaften und -werte referenzieren
Unbenannte und wiederholte Objekte referenzieren
Referenz-Syntax-Kurzbefehle für FormCalc

http://www.adobe.com/go/learn_aemforms_scriptingReference_62

Objekte in Berechnungen und Skripten referenzieren
8.4. Referenz-Syntax-Kurzbefehle für FormCalc
Mit Hilfe einer Reihe von Kurzbefehlen lassen sich Referenzen in FormCalc bequemer erstellen,
wodurch der Zugriff auf Objekteigenschaften und -werte erleichtert wird. Dieser Abschnitt
beschreibt die Referenzsyntax-Kurzbefehle für FormCalc.
8.4.1. Aktuelles Feld oder Objekt
Bezeichnet das aktuelle Feld oder Objekt
Notation
$

Beispiel
$ = "Tony Blue"

Das obige Beispiel setzt den Wert des aktuellen Feldes oder Objekts auf Tony Blue.
8.4.2. Stamm-Node des Datenmodells xfa.datasets.data
Bezeichnet die Stamm-Node des Datenmodells xfa.datasets.data.
Notation
$data
Beispiel
$data.purchaseOrder.total

entspricht

xfa.datasets.data.purchaseOrder.total
8.4.3. Formularobjekt-Ereignis
Bezeichnet das aktuelle Formularobjekt-Ereignis.
99

Objekte in Berechnungen und Skripten referenzieren 8
Notation
 100
$event
Beispiel
$event.name

entspricht

xfa.event.name

Weitere Informationen finden Sie in Mit dem Ereignismodell arbeiten.
8.4.4. Stamm-Node des Formularmodells
Bezeichnet die Stamm-Node des Formularmodells xfa.form.
Notation
$form
Beispiel
$form.purchaseOrder.tax

entspricht

xfa.form.purchaseOrder.tax
8.4.5. Host-Objekt
Bezeichnet das Host-Objekt.
Notation
$Host

Objekte in Berechnungen und Skripten referenzieren
Beispiel
$Host.messageBox(„Hallo Welt“)

entspricht

xfa.host.messageBox(„Hallo Welt“)

Weitere Informationen unter Mit Host-Anwendungen arbeiten.
8.4.6. Stamm-Node des Layoutmodells
Bezeichnet den Stammknoten des Layoutmodellsxfa.layout.
Notation
$layout
Beispiel
$layout.ready

entspricht

xfa.layout.ready
8.4.7. Datensatz aus einer Zusammenstellung von Daten
Bezeichnet den aktuellen Datensatz aus einer Zusammenstellung von Daten, z. B. aus einer
XML-Datei.
Notation
$record
Beispiel
$record.header.txtOrderedByCity

verweist auf den txtOrderedByCity -Knoten im Kopfzeilenknoten der aktuellen XML-Daten.
8.4.8. Stamm-Node des Vorlagenmodells
Bezeichnet die Stamm-Node des Vorlagenmodells xfa.template.
101

Objekte in Berechnungen und Skripten referenzieren 8
Notation
 102
$template
Beispiel
$template.purchaseOrder.item

entspricht

xfa.template.purchaseOrder.item
8.4.9. Stamm-Node des Datenmodells xfa.datasets
Bezeichnet die Stammknoten des Datenmodellsxfa.datasets.
Notation
!

Beispiel
!data

entspricht

xfa.datasets.data
8.4.10. Alle Formularobjekte auswählen
Wählt alle Formularobjekte innerhalb eines gegebenen Containers, z. B. in einem Teilformular,
unabhängig von ihrem Namen bzw. alle Objekte mit einem ähnlichen Namen aus.

Sie können die Syntax „*“ (Sternchen) mit JavaScript verwenden, wenn es mit der resolveNode
-Methode verwendet wird.
Notation
*

Beispiel
Beispielsweise wählt der folgende Ausdruck alle Objekte mit dem Namen item in einem Formular:

xfa.form.form1.item[*]

http://www.adobe.com/go/learn_aemforms_scriptingReference_62

Objekte in Berechnungen und Skripten referenzieren
8.4.11. Nach Objekten suchen, die Teil eines Unter-Containers sind
Sie können an jeder Stelle in Ihrer Referenzsyntax zwei Punkte einsetzen, um nach Objekten zu suchen,
die Teil eines Unter-Containers des aktuellen Container-Objekts (z. B. eines Teilformulars) sind.

Sie können die Syntax '..' (zwei Punkte) mit JavaScript verwenden, wenn es mit der resolveNode
-Methode verwendet wird.
Notation
..
Beispiel
Der Ausdruck Subform_Page..Subform2 heißt, den Knoten Subform_Page (wie üblich)
zu suchen und ein untergeordnetes Element von Subform_Page mit dem Namen Subform2
aufzurufen.

Aus dem obigen Beispiel-Baumdiagramm ergibt sich:

Subform_Page..TextField2

entspricht

Subform_Page.Subform1[0].Subform3.TextField2[0],

because TextField2[0]ist im ersten Subform1 -Knoten, auf den FormCalc bei der Suche trifft.
Ein zweites Beispiel:

Subform_Page..Subform3[*]

gibt alle vier TextField2 Objekte zurück.
103

http://www.adobe.com/go/learn_aemforms_scriptingReference_62

Objekte in Berechnungen und Skripten referenzieren 8
8.4.12. Unbenannte Objekte bezeichnen oder Eigenschaften angeben
 104
Das Nummernzeichen (#) dient zur Bezeichnung eines der folgenden Elemente in einer Referenz-
syntax:

• Ein unbenanntes Objekt

• Geben Sie in einer Referenzsyntax eine Eigenschaft an, wenn eine Eigenschaft und ein Objekt
den gleichen Namen tragen

Sie können die Syntax mit Raute (#) mit JavaScript verwenden, wenn die resolveNode -Methode
verwendet wird.
Notation
#

Beispiel
Beispielsweise greift die folgende Referenzsyntax auf ein unbenanntes Teilformular zu:

 xfa.form.form1.#subform

Die folgende Referenzsyntax greift auf die name -Eigenschaft eines Teilformulars zu, wenn das Teil-
formular auch ein Feld mit dem Namen name enthält:

 xfa.form.form1.#Teilformular.#name
8.4.13. Wert für das Vorkommen eines Objekts
Die eckige Klammer ([]) gibt den Wert für das Vorkommen eines Objekts an.

In sprachspezifischen Formularen für Arabisch, Hebräisch, Thailändisch und Vietnamesisch
befindet sich die Referenzsyntax grundsätzlich rechts (auch bei Sprachen, die von rechts nach links
geschrieben werden).
Notation
[]

http://www.adobe.com/go/learn_aemforms_scriptingReference_62

Objekte in Berechnungen und Skripten referenzieren
Beispiel
Um eine Referenz mit einem solchen Wert zu erstellen, platzieren Sie eckicke Klammern ([]) hinter
einen Objektnamen und schließen Sie in den eckigen Klammern einen der folgenden Werte ein:

• [n], wobeineine absolute Vorkommens-Indexnummer ist (der Index beginnt bei 0). Wenn
eine Vorkommensnummer außerhalb des zulässigen Bereichs liegt, wird kein Wert zurückge-
geben. Beispiel,

xfa.form.form1.#subform.Quantity[3]

referenziert das vierte Vorkommen des Objekts „Quantity“.

• [+/- n], wobei n ein Vorkommen relativ zum Vorkommen des Objekts ist, von welchem
die Referenz ausgeht. Positive Werte liefern höhere Vorkommensnummern und negative
Werte liefern niedrigere. Beispiel,

xfa.form.form1.#subform.Quantity[+2]

Diese Referenz liefert das Vorkommen von „Quantity“, dessen Vorkommensnummer um 2
höher ist als die Vorkommensnummer des Containers, von dem die Referenz ausgeht. Stünde
diese Referenz beispielsweise mit dem Objekt „Quantity[2]“ in Verbindung, so wäre sie gleich-
bedeutend mit:

xfa.template.Quantity[4]

Wenn die berechnete Indexnummer außerhalb des zulässigen Bereichs liegt, gibt die Referenz
einen Fehler zurück.

Die häufigste Anwendung dieser Syntax ist die Ansteuerung des vorigen oder nächsten
Vorkommens eines bestimmten Objekts. Beispielsweise könnte man bei jedem Vorkommen
des Objekts „Quantity“ (außer beim ersten) mit „Quantity[-1]“ den Wert des vorigen
„Quantity“-Objekts abrufen.

• [*]gibt mehrere Vorkommen eines Objekts an. Das erste benannte Objekt wird gefunden
und die mit dem ersten Objekt verwandten Objekte desselben Namens werden zurückgegeben.
Beachten Sie, dass bei dieser Notation eine Zusammenstellung von mehreren Objekten
zurückgegeben wird. Beispiel,

xfa.form.form1.#subform.Quantity[*]

• Dieser Ausdruck bezieht sich auf alle Objekte mit dem Namen Menge die gleichgestellte
Elemente des ersten Vorkommens von Menge ist gefundenen von der Referenz.
105

Objekte in Berechnungen und Skripten referenzieren 8

 106
In dem gezeigten Baumdiagramm geben diese Ausdrücke jeweils die folgenden Objekte zurück:

• Subform_Page.Subform1[*]gibt beide Subform1 -Objekte zurück.

• Subform_Page.Subform1.Subform3.TextField2[*]gibt beide TextField2
-Objekte zurück. Subform_Page.Subform1 wird in das erste Subform1 -Objekt auf der
linken Seite aufgelöst, und TextField2[*]wird relativ zum Subform3 -Objekt evaluiert.

• Subform_Page.Subform1[*].TextField1 gibt beide TextField1 Instanzen
zurück. Subform_Page.Subform1[*]löst beide Subform1 -Objekte auf, und Text-
Field1 evaluiert relativ zu den Subform1 -Objekten.

• Subform_Page.Subform1[*].Subform3.TextField2[1]gibt das zweite und
vierte TextField2 -Objekt von links zurück. Subform_Page.Subform1[*]löst beide
Subform1 -Objekte auf, und TextField2[1]evaluiert relativ zu den Subform3
-Objekten.

• Subform_Page.Subform1[*].Subform3[*]gibt beide Instanzen des Subform3
-Objekts zurück.

• Subform_Page.*gibt beide Subform1 Objekte und das Subform2 -Objekt zurück.

• Subform_Page.Subform2.*gibt die beiden Instanzen des NumericField2 -Objekts
zurück.

• Sie können die []' (mit eckigen Klammern) Syntax in Verbindung mit JavaScript verwenden,
wenn die resolveNode -Methode verwendet wird.

•

VERKNPFTE LINKS:
Objekte in Berechnungen und Skripten referenzieren

http://www.adobe.com/go/learn_aemforms_scriptingReference_62

JavaScript-Funktionen erstellen und wiederverwenden
9. JavaScript-Funktionen erstellen und
wiederverwenden
Das Skriptobjekt ist ein Objekt, in dem Sie JavaScript-Funktionen und -Werte getrennt von
konkreten Formularobjekten speichern können. Üblicherweise verwenden Sie das Skriptobjekt
zur Erstellung von benutzerdefinierten Funktionen und Methoden, die Sie als Teil von Java-
Script-Skripten an mehreren Stellen in Ihrem Formular verwenden möchten. Dadurch wird
der Arbeitsaufwand, der bei der Skripterstellung für sich wiederholende Aktionen normalerweise
anfällt, erheblich reduziert.

Das Skriptobjekt unterstützt nur Skripten, die in JavaScript geschrieben wurden. Hinsichtlich der
Stellen, an welchen die Skripten ausgeführt werden, gibt es jedoch keine Einschränkungen. Es muss
lediglich gewährleistet sein, dass die Skriptsprache für das Ereignis, welches das Skriptobjekt auslöst,
auf JavaScript eingestellt ist.

Im Allgemeinen verarbeiten Acrobat und Forms die Skripterstellung eines Skriptobjekts auf die
gleiche Weise, es gibt jedoch auch Unterschiede.

Nur Skripten, die für die Ausführung auf dem Client konfiguriert sind, können Skriptobjekte
nutzen, die für die Ausführung auf dem Client konfiguriert sind, und umgekehrt.
9.1. So erstellen Sie ein Skriptobjekt
Die Erstellung eines Skriptobjekts erfolgt in zwei Phasen. Die erste Phase besteht darin, das Objekt
selbst dem Formularentwurf hinzuzufügen; die zweite Phase ist die eigentliche Erstellung des Skripts,
das Sie im Skriptobjekt speichern möchten.

1) Erstellen Sie ein neues Formular oder öffnen Sie ein vorhandenes.

2) Klicken Sie in der Palette „Hierarchie“ mit der rechten Maustaste auf ein Objekt auf Formula-
rebene bzw. auf Teilformularebene und wählen Sie „Skriptobjekt einfügen“.
107

JavaScript-Funktionen erstellen und wiederverwenden 9

 108
A. Formularebenenobjekt B. Teilformularebenenobjekt C. Teilformularebenenskriptobjekt D. Formularebe-
nenskriptobjekt

3) (Optional) Klicken Sie mit der rechten Maustaste auf das Skriptobjekt und wählen Sie „Objekt
umbenennen“.
9.2. So fügen Sie einem Skriptobjekt Skripten hinzu
Nachdem Sie Ihr Formular mit einem Skriptobjekt versehen haben, können Sie mit dem
Skript-Editor Skripten hinzufügen.

1) Wählen Sie in der Palette „Hierarchie“ das Skriptobjekt „“ aus.

Der Skript-Editor wird angezeigt. Die Liste „Anzeigen“ enthält den Wert „Skriptobjekt“ und
die Liste „Sprache“ den Wert „JavaScript“. Sie können keinen dieser Werte ändern.

2) Geben Sie im Feld "Skriptquelle" Ihr Skript ein.

3) Zum Testen des Formulars klicken Sie auf die Registerkarte „PDF-Vorschau“.
9.2.1. Beispiel
Erstellen Sie z. B. ein Skriptobjekt namens Feedback, die folgende Funktion enthält:

function emptyCheck(oField) {

if ((oField.rawValue == null) || (oField.rawValue == "")) { xfa.host.messa-
geBox("You must input a value for this field.", "Error Message", 3);
}
}

JavaScript-Funktionen erstellen und wiederverwenden
9.3. So referenzieren Sie JavaScript-Funktionen in einem
Skriptobjekt
Nachdem Sie einem Skriptobjekt Skripten hinzugefügt haben, können Sie das Skriptobjekt von
jedem Ereignis aus referenzieren, das JavaScript-Skripten unterstützt.

1) Wählen Sie ein Objekt im Formular und anschließend unter „Anzeigen“ ein Ereignis aus.

2) Erstellen Sie eine Referenz zum Skriptobjekt und zu beliebigen Funktionen im Skriptobjekt.
In der folgenden generischen Syntax wird davon ausgegangen, dass sich das Objekt, von dem
aus das Skriptobjekt referenziert wird, in der Formularhierarchie auf derselben Ebene wie das
Skriptobjekt befindet bzw. dass sich das Skriptobjekt in der Formularhierarchie auf der
obersten Ebene befindet.

script_object.function_name(parameter1, ...);

3) Wenden Sie das neue Skript auf das Formularobjekt an und testen Sie es durch Anzeigen einer
Formularvorschau auf der Registerkarte „PDF-Vorschau“.

Ähnlich wie beim Referenzieren anderer Objekte auf einem Formular müssen Sie beim Referen-
zieren des Skriptobjekts eine gültige Syntax angeben, die auch die Position des Objekts innerhalb der
Formularhierarchie beinhaltet. Weitere Informationen zum Referenzieren von Objekten bei der
Skripterstellung finden Sie unter Objekteigenschaften und -werte referenzieren.
9.3.1. Beispiel
Verwenden Sie das Skriptobjektbeispiel aus Um ein Skript zu einem Skriptobjekt hinzuzufügen,
platzieren Sie das folgende JavaScript-Skript auf das exit -Ereignis für ein Textfeld. Testen Sie das
Formular durch Anzeige auf der Registerkarte „PDF-Vorschau“.
109

Skriptfragmente verwenden 10
10. Skriptfragmente verwenden
 110
Ein Skriptfragment enthält grundsätzlich ein Skriptobjekt. Ein Skriptobjekt enthält wiederverwend-
bare JavaScript-Funktionen oder Werte, die unabhängig von einem bestimmten Formularobjekt,
z.B. einem Datumsparser oder einem Webdienstaufruf, gespeichert werden. Normalerweise
verwenden Sie Skriptobjekte zur Erstellung von benutzerdefinierten Funktionen und Methoden,
die Sie an mehreren Stellen in Ihrem Formular verwenden möchten. Dadurch wird der Arbeitsauf-
wand, der bei der Skripterstellung für sich wiederholende Aktionen normalerweise anfällt, erheblich
reduziert.

Skriptfragmente enthalten nur Skriptobjekte, die als untergeordnete Objekte von Variablen auf der
Palette „Hierarchie“ angezeigt werden. Fragmente können keine Skripten enthalten, die mit anderen
Formularobjekten verbunden sind. Dies gilt z. B. für Ereignisskripten wie „validate“, „calculate“
oder „initialize“.

Sie können Skriptfragmente über die Palette „Hierarchie“ erstellen.

Skriptfragmente werden genau wie herkömmliche Fragmente bearbeitet.
10.1. Eigenschaften von Skriptfragmenten
Bei Auswahl eines Skriptfragments werden auf der Registerkarte „Skriptobjekt“ der Palette „Objekt“
die Eigenschaften des Skriptfragments angezeigt.
10.1.1. Quelldatei
Legt die Quelldatei für den Fragmentverweis fest. Diese Eigenschaft ist nur sichtbar, wenn das ausge-
wählte Objekt eine Fragmentverweis ist.
10.1.2. Fragmentname
Legt den Namen des Fragments fest. Sie können auf die Schaltfläche „Fragmentinformationen“
klicken, um die Fragmentinformationen anzuzeigen.

Diese Eigenschaft ist sichtbar, wenn ein Fragmentverweis bzw. ein in einer Quelldatei definiertes
Fragment ausgewählt ist. Wenn es sich bei dem ausgewählten Objekt um einen Fragmentverweis
handelt und keine Quelldatei angegeben wurde, wird diese Eigenschaft nicht angezeigt. Unter
„Fragmentname“ werden alle in der angegebenen Quelldatei festgelegten Fragmente aufgeführt.
Die Option „Benutzerdefiniert“ bietet eine direkte Unterstützung für das Festlegen eines
SOM-Ausdrucks oder eines ID-Werts als Fragmentverweis sowie für die Implementierung
in die XML Forms Architecture.

Skriptfragmente verwenden
10.2. So erstellen Sie ein Skriptfragment
Sie können ein in mehreren Formularen wiederverwendbares Skriptfragment mit allgemeinen
Funktionen erstellen. Zum Erstellen eines Skriptfragments erstellen Sie ein Skriptobjekt mit den
entsprechenden wiederverwendbaren Funktionen. Ein Skriptfragment kann auch nur aus einem
Skriptobjekt bestehen.

1) Erstellen Sie ein Skriptobjekt.

2) Klicken Sie in der Palette „Hierarchie“ mit der rechten Maustaste auf das Skriptobjekt und
wählen Sie „Fragmente“ und dann „Fragment erstellen“.

HINWEIS: Sie können Skriptfragmente auch durch Ziehen des Skriptobjekts aus der Palette
„Hierarchie“ in die Palette „Fragmentbibliothek“ erstellen.

3) Zum Verwenden eines anderen Fragmentnamens geben Sie im Feld „Name“ den gewünschten
Namen ein.

4) (Optional) Geben Sie im Feld „Beschreibung“ eine Beschreibung des Fragments ein.

5) Wählen Sie eine Methode zum Erstellen des Fragments:

• Wenn Sie das Fragment in einer separaten XDP-Datei definieren möchten, die in der
Fragmentbibliothek gespeichert wird, wählen Sie die Option „Neues Fragment in Frag-
mentbibliothek erstellen“. Wählen Sie in der Liste „Fragmentbibliothek“ die Fragment-
bibliothek aus, in der Sie die Fragmentdatei speichern möchten. Wenn Sie einen anderen
Dateinamen verwenden möchten, geben Sie im Feld „Dateiname“ den gewünschten
Dateinamen für das Fragment ein. Wenn Sie die Auswahl nicht durch das neue Fragment
ersetzen möchten, deaktivieren Sie das Kontrollkästchen „Auswahl durch Verweis auf
neues Formularfragment ersetzen“.

• Um das Fragment in der aktuellen Datei zu definieren, wählen Sie „Neues Fragment
in aktuellem Dokument erstellen“.

6) Klicken Sie auf OK.
10.3. So fügen Sie ein Skriptfragment ein
Skriptfragmente bieten Ihnen die Möglichkeit, JavaScript-Funktionen in mehreren Formularen
wiederzuverwenden. Beim Erstellen eines neuen Formularentwurfs fügen Sie einen Verweis auf
ein vorhandenes Skriptfragment ein. Das Fragment wird dann im Formularentwurf angezeigt.

Fragmente können nicht in XFAF-Dokumente eingefügt werden.

HINWEIS: Aktivieren Sie im Menü der Palette „Fragmentbibliothek“ die Option „Vorschaufenster
einblenden“, um eine Vorschau der Fragmente in der Palette anzuzeigen.
111

Skriptfragmente verwenden 10
10.3.1. So fügen Sie ein Skriptfragment über die Palette „Fragmentbibliothek“ ein
 112
1) Wählen Sie in der Fragmentbibliothek das Skriptfragment aus.

2) Ziehen Sie das Fragment auf ein Teilformular- oder Variablen-Objekt in der Palette
„Hierarchie“.
10.3.2. So fügen Sie ein Skriptfragment über das Menü „Einfügen“ ein
1) Wählen Sie „Einfügen“ „Fragment“.

2) Rufen Sie die Datei mit dem Fragment auf.

3) Wählen Sie die Datei aus und klicken Sie auf „OK“. Das Fragment wird im Stammteilformular
als dem Variablen-Objekt untergeordnetes Objekt angezeigt.

VERKNPFTE LINKS:
JavaScript-Funktionen erstellen und wiederverwenden
So erstellen Sie ein Skriptobjekt
Um ein Skript zu einem Skriptobjekt hinzuzufügen

Debugging von Berechnungen und Skripten
11. Debugging von Berechnungen und
Skripten
In Designer stehen gemäß der gewählten Skriptsprache verschiedene Funktionen und Techniken
zum Debugging von Berechnungen und Skripten zur Verfügung.

Wenn Sie JavaScript-Sprachskripte debuggen möchten, können Sie den Befehl alert oder die
messageBox -Methode verwenden, um Debugging-Feedback bereitzustellen. Ein Nachteil dieser
Methode besteht darin, dass Sie viele Meldungsfelder schließen müssen. Die Anzeige eines
Meldungsfelds kann zudem Unterschiede im Verhalten des Formulars zur Folge haben. Dies gilt
insbesondere, wenn Sie ein Skript debuggen, das den Fokus auf ein Objekt im Formular festlegt.
Am besten verwenden Sie console.println, um Text von Acrobat auf die JavaScript-Konsole
auszugeben, um ein Formular zu debuggen.
11.1. Warn- und Prüfmeldungen in der Palette „Bericht“
von Designer
In der Palette „Bericht“ werden Warn- und Prüfmeldungen angezeigt, die Sie im Rahmen des
Formularentwurfs beim Debugging unterstützen. Auf der Registerkarte „Warnungen“ finden Sie
Fehler oder Meldungen, die von Designer während des Formularentwurfs erzeugt wurden. Folgende
Fehler und Meldungen werden auf der Registerkarte „Protokoll“ angezeigt:

• Prüfmeldungen

• JavaScript- oder FormCalc-Skriptausführungsfehler

• Wiedergabefehler beim Entwurf, die beim Importieren oder Speichern eines Formulars oder
bei der Vorschau eines Formulars auf der Registerkarte „PDF-Vorschau“ generiert werden

Weitere Informationen zur Verwendung der Palette „Bericht“ finden Sie unter Berechnungen und
Skripte mit dem Arbeitsbereich debuggen.
113

Debugging von Berechnungen und Skripten 11
11.2. Debugging-Feedback mit der messageBox-Methode
bereitstellen
 114
Mit der XML-Fomularobjektmodell messageBox -Methode können Sie die aus einem interak-
tiven Formular stammenden Informationen zur Laufzeit in einem Dialogfeld ausgeben. Sie können
die XML-Fomularobjektmodell messageBox -Methode verwenden, um Meldungen oder
Feldwerte zur Laufzeit anzuzeigen. Wenn initiiert, zeigt die messageBox -Methode in der
Client-Anwendung in einem neuen Dialogfeld einen Zeichenfolgenwert an. Bei diesem Zeichenfol-
genwert kann es sich um eine Textmeldung handeln, die Sie zu Debugging-Zwecken erstellen, oder
um den Zeichenfolgenwert von Feldern oder Ausdrücken.

Angenommen, ein einfacher Formularentwurf enthält ein einzelnes numerisches Feld (Numeric-
Field1) und eine Schaltfläche (Button1). In diesem Fall geben die folgende FormCalc-Berechnung
und das folgende JavaScript-Skript jeweils eine Meldung aus, die sich aus Text und dem im numeri-
schen Feld gegenwärtig angezeigten Wert zusammensetzt. Durch das Hinzufügen der Berechnung
oder des Skripts zum click -Ereignis des Schaltflächenobjekts, wird der Wert des numerischen
Felds interaktiv in einem neuen Dialogfeld angezeigt, indem Sie auf die Schaltfläche klicken.
11.3. FormCalc
xfa.host.messageBox(Concat("Der Wert des NumericField1 lautet: ",
NumericField1), "Debugging", 3)
11.4. JavaScript
xfa.host.messageBox("Das Wert von NumericField1 lautet: " +
NumericField1.rawValue, "Debugging", 3);

WICHTIG: Die messageBox -Methode gibt im Meldungsdialogfeld einen Ganzzahlwert für die
Schaltfläche zurück, auf die der Benutzer beim Ausfüllen des Formulars klickt. Wenn Sie die messa-
geBox -Methode an das calculate -Ereignis eines Feldobjekts anhängen und die messageBox
-Methode die letzte Skriptzeile ist, gibt das Feld den Rückgabewert der messageBox -Methode zur
Laufzeit an.

Weitere Informationen zur Verwendung von messageBox finden Sie unter messageBox

Debugging von Berechnungen und Skripten
11.5. Informationen in ein Textfeld ausgeben
Sie haben die Möglichkeit, Informationen wie Feldwerte oder Meldungen in ein Textfeld des
Formularentwurfs auszugeben. Beispielsweise können Sie neue Meldungen oder Werte an den Wert
eines Textfeldes anhängen und so ein Protokoll für die künftige Verwendung erstellen.
11.6. JavaScript-Debugging
Wenn Sie JavaScript-Sprache für ein Skript verwenden, können Sie die
console.println("string") -Funktion verwenden, um Informationen auf auf der Java-
Script-Konsole in Acrobat Professional auszugeben. Alternativ dazu können Sie die alert
-Methode vom Acrobat-JavaScript-Objektmodell zum Debuggen von JavaScript verwenden.
11.6.1. JavaScript Debugger in Acrobat Professional
Testen Sie JavaScript-Skripten mit dem JavaScript-Debugger von Acrobat Professional. Der Debugger
enthält die JavaScript-Konsole, mit der Sie auf der Registerkarte „PDF-Vorschau“ Teile des Java-
Script-Codes testen können. Die JavaScript-Konsole bietet eine interaktive und bequeme Schnitt-
stelle, mit der Sie Teile des JavaScript-Codes testen und mit anderen Objekteigenschaften und
-methoden experimentieren können. Dank dieser interaktiven Funktionalität verhält sich die Java-
Script-Konsole wie ein Editor, welcher die Ausführung einzelner Code-Zeilen oder Code-Blöcke
unterstützt.

Wenn Sie den JavaScript-Debugger für Designer aktivieren und den Code von der JavaScript-Konsole
ausführen möchten, aktivieren Sie in Acrobat Professional JavaScript und den JavaScript-Debugger.

HINWEIS: Wenn Sie Acrobat Reader DC-Erweiterungen installiert haben, können Sie den Java-
Script-Debugger in Adobe Reader aktivieren. Zum Aktivieren des JavaScript-Debuggers in Adobe
Reader muss die Datei „debugger.js“ geöffnet und in der Microsoft Windows-Registrierung bearbeitet
werden. Informationen zur Aktivierung des JavaScript-Debuggers in Adobe Reader erhalten Sie unter
Entwickeln von Acrobat-Anwendungen mithilfe von JavaScript (Nur Englisch).
11.6.2. So aktivieren Sie den JavaScript-Debugger für Designer
1) Starten Sie Designer.

2) Starten Sie Acrobat Professional.

3) In Acrobat Professional wählen Sie „Bearbeiten“ > „Voreinstellungen“.

4) Wählen Sie aus der linken Liste "JavaScript".

5) Sofern nicht bereits aktiviert, wählen Sie „Acrobat JavaScript aktivieren“.
115

http://www.adobe.com/go/learn_lc_AcrobatDeveloper

Debugging von Berechnungen und Skripten 11

 116
6) Aktivieren Sie unter „JavaScript-Debugger“ die Option „JavaScript-Debugger nach dem
Neustart von Acrobat aktivieren“.

7) Wählen Sie "Interaktive Konsole aktivieren". Mit dieser Option können Sie den in der Java-
Script-Konsole geschriebenen Code auswerten.

8) Wählen Sie "Konsole bei Fehlern und Meldungen anzeigen". Mit dieser Option wird sicherge-
stellt, dass die JavaScript-Konsole bei Falscheingaben hilfreiche Informationen anzeigt.

9) Klicken Sie auf „OK“, um das Dialogfeld „Grundeinstellungen“ zu schließen.

10) Beenden Sie Acrobat Professional.

11) Klicken Sie in Designer auf die Registerkarte „PDF-Vorschau“.

12) Drücken Sie die Tasten Strg+J, um den JavaScript-Debugger zu öffnen.
11.6.3. So verhindern Sie, dass der JavaScript-Debugger in Designer
ausgeblendet wird
Wenn der JavaScript-Debugger von Acrobat aktiviert wurde und ausgeblendet wird, sobald Sie in
Designer auf „Komponenten“ klicken, beenden Sie den Acrobat.exe-Prozess im Microsoft Windows
Task-Manager. Der Acrobat.exe-Prozess wird auch nach Beendigung von Acrobat weiter ausgeführt,
damit Acrobat bei einem Neustart schneller angezeigt werden kann. Durch Beenden des Prozesses
wird auch die Verknüpfung zwischen dem JavaScript-Debugger und der Acrobat Professional-Sitzung
beendet. Der JavaScript-Debugger kann dann in Designer eingesetzt werden.

1) Klicken Sie im Windows Task-Manager auf die Registerkarte "Prozesse".

2) Klicken Sie in der Spalte „Name“ mit der rechten Maustaste auf Acrobat.exe und wählen Sie
„Prozess beenden“.
11.6.4. Code mit der JavaScript-Konsole auswerten
Sie haben drei Möglichkeiten, einzelne oder mehrere Code-Zeilen mit der JavaScript-Konsole
von Acrobat auszuwerten.

Debugging von Berechnungen und Skripten
11.6.5. So werten Sie einen Teil einer Code-Zeile aus
1) Markieren Sie den gewünschten Teil im Konsolenfenster und drücken Sie entweder die
Eingabetaste auf der Zehnertastatur oder Strg+Enter auf der normalen Tastatur.
11.6.6. So werten Sie eine einzelne Code-Zeile aus
1) Platzieren Sie den Cursor in die gewünschten Zeile im Konsolenfenster und drücken Sie
Enter auf der Zehnertastatur Strg+Enter auf der normalen Tastatur.
11.6.7. So werten Sie mehrere Code-Zeilen aus
1) Markieren Sie die Zeilen im Konsolenfenster und drücken Sie entweder die Eingabetaste
auf der Zehnertastatur oder Strg+Enter auf der normalen Tastatur.
11.6.8. So löschen Sie in der JavaScript-Konsole angezeigte Inhalte
1) Klicken Sie im Konsolenfenster auf die Option zum Löschen.

Das Ergebnis des zuletzt ausgewerteten JavaScript-Skriptes wird im Konsolenfenster angezeigt.

Nach der Auswertung jedes JavaScript-Skripts druckt das Konsolenfenster undefined aus,
welches der Wiedergabewert der Anweisung ist. Beachten Sie, dass das Ergebnis einer Anweisung
nicht dem Wert eines Ausdrucks innerhalb der Anweisung entspricht. Der Rückgabewert
undefined bedeutet nicht, dass der Wert des Skriptes nicht definiert („undefined“) ist,
sondern dass der Rückgabewert der JavaScript-Anweisung nicht definiert ist.
11.6.9. Debugging-Feedback für die JavaScript-Konsole bereitstellen
Wenn Sie Skripte mit JavaScript erstellen, können Sie Meldungen von Acrobat an die JavaScript-Konsole
zur Laufzeit ausgeben, indem Sie die console.println -Methode verwenden, die sich im
JavaSkript-Objektmodell von Acrobat befindet. Wenn initiiert, zeigt die console.println einen
Zeichenfolgenwert in der JavaScript-Konsole an. Bei diesem Zeichenfolgenwert kann es sich um eine
Textmeldung handeln, die Sie zu Debugging-Zwecken erstellen, oder um den Zeichenfolgenwert von
Feldern oder Ausdrücken.

Angenommen, ein einfacher Formularentwurf enthält ein einzelnes numerisches Feld (Numeric-
Field1) und eine Schaltfläche (Button1). In diesem Fall gibt das folgende JavaScript-Skript eine
Meldung aus, die sich aus Text und dem im numerischen Feld gegenwärtig angezeigten Wert
zusammensetzt. Durch das Hinzufügen der Berechnung oder des Skripts zum click -Ereignis des
Schaltflächenobjekts, wird der Wert des numerischen Felds interaktiv in einem neuen Dialogfeld
angezeigt, indem Sie auf die Schaltfläche klicken.

console.println("Der Wert lautet " + NumericField1.rawValue);
117

Debugging von Berechnungen und Skripten 11

 118
Weitere Informationen zur console.println -Methode und dem Javascript-Objektmodell von
Acrobat finden Sie unter Entwickeln von Acrobat-Anwendungen mithilfe von JavaScript (Nur Englisch).

Informationen zur JavaScript-Konsole sowie zum JavaScript-Debugger erhalten Sie unter
Entwickeln von Acrobat-Anwendungen mithilfe von JavaScript (Nur Englisch).
11.6.10. Debugging-Feedback mit der alert-Methode bereitstellen
Wenn Sie beispielsweise ein Meldungsfeld während eines calculate -Ereignis zurückgeben
wollen, können Sie die alert -Methode vom Javascript-Objektmodell von Acrobat nutzen.
Das folgende Skript gibt zum Beispiel den Wert eines Textfelds zurück:

var oField = xfa.resolveNode("TextField1").rawValue;
app.alert(oField);

Weitere Informationen zur alert -Methode und dem Javascript-Objektmodell von Acrobat
finden Sie unter Entwickeln von Acrobat-Anwendungen mithilfe von JavaScript (Nur Englisch).

VERKNPFTE LINKS:
Berechnungen und Skripte mit dem Arbeitsbereich debuggen
11.7. Tipps zum Debugging
Beachten Sie beim Debugging von Berechnungen und Skripten die folgenden Tipps.
11.7.1. Musterdaten
Denken Sie daran, im Dialogfeld „Formulareigenschaften“ eine Vorschaudatendatei anzugeben.
Hierdurch werden die Daten jedoch nicht in der endgültigen PDF-Datei gespeichert.
11.7.2. Masterseiten
Legen Sie für das Debugging von Masterseiten auf jeder Masterseite ein anderes Objekt ab,
um festzustellen, welches Objekt angegeben wurde.
11.7.3. Erste Seite eines Formulars
Designer orientiert sich am Stammteilformular, um festzustellen, auf welcher Seite das Formular
beginnt. Geht die erste Seite nicht aus dem Stammteilformular hervor, wird standardmäßig die erste
Masterseite verwendet.

http://www.adobe.com/go/learn_lc_AcrobatDeveloper
http://www.adobe.com/go/learn_lc_AcrobatDeveloper
http://www.adobe.com/go/learn_lc_AcrobatDeveloper

Debugging von Berechnungen und Skripten
11.7.4. Inkrementelles Debugging
Beginnen Sie beim Debugging eines Formularentwurfs damit, nacheinander einzelne Teile des
Formulars zu entfernen. Führen Sie den Vorgang so lange durch, bis das Problem nicht mehr repro-
duziert werden kann. Versuchen Sie die Quelle des Problems einzugrenzen, nachdem Sie alle Skript-
und Objekteigenschaften überprüft haben. Um Teilformulare zu debuggen, können Sie das jeweilige
Teilformular mit einer dicken farbigen Umrandung versehen. Sie haben auch die Möglichkeit, eine
Füllfarbe zu verwenden. Mit Hilfe von Farben bzw. Füllfarben können Sie verdeutlichen, welches
Teilformular verwendet wird und bis wohin das Teilformular reicht. Diese Vorgehensweise empfiehlt
sich, wenn Sie die Begrenzungen eines Objekts ermitteln und feststellen möchten, warum das Objekt
an einem bestimmten Ort platziert ist.
11.7.5. Hierarchieansicht
Zeigen Sie den Formularentwurf in der Hierarchieansicht an, um eine bessere Einsicht zu erhalten.
Die Reihenfolge der Objekte in der Hierarchie entspricht der Reihenfolge ihrer Platzierung auf der
Seite. Einige Objekte sind nicht anklickbar, wenn sie untereinander angeordnet sind.
11.7.6. Skriptfehlermeldungen
In Designer werden Skriptfehlermeldungen bei der Vorschau des Formulars auf der Registerkarte
„Protokoll“ der Palette „Bericht“ angezeigt. Wenn der Formularentwurf FormCalc-Skripten enthält
und der Fehler auf dem Server auftritt, werden Warnungen auf der Registerkarte „Protokoll“ ange-
zeigt. Tritt der FormCalc-Skriptfehler auf dem Client auf, erfolgt die Anzeige der Meldung in Adobe
Reader oder Acrobat.

Das Vorhandensein eines Fehlers in einem FormCalc-Skript verhindert die Ausführung des Skripts.

Bei Vorhandensein eines Fehlers in einem JavaScript wird das Skript bis zur Fehlerposition ausge-
führt.
11.7.7. Syntaxfehler in FormCalc
Syntaxfehler in FormCalc sind bisweilen schwer zu beheben. Wenn die Meldung ""Syntax error near
token '%1' on line %2, column %3"angezeigt wird, enthält %1 im Allgemeinen den Token
(Wort), der dem Fehler am nächsten ist. Das Token ist jedoch möglicherweise korrekt und die
Meldung steht lediglich durch die Nähe zur Fehlerposition in Zusammenhang mit dem Fehler.
Das folgende Skript generiert beispielsweise den Fehler 7008: „Syntaxfehler bei Token then in Zeile x,
Spalte y.“

var b = abc(1)
if (b ne 1) dann
//comment
119

Debugging von Berechnungen und Skripten 11

 120
Das Problem ist, dass ein endif Token im Skript fehlt. Der letzte korrekte Token ist then
(Kommentare zählen nicht als Token). Das Hinzufügen einer endif -Anweisung am Ende des
Skripts behebt das Problem.
11.7.8. In einem Skriptobjekt definierte Funktionen
Sie können nur Funktionen aufrufen, die mit einem JavaScript-Skript in einem Skriptobjekt defi-
niert sind. Ändern Sie daher die Skriptsprache im Skript-Editor in JavaScript. Anderenfalls werden
Sie eventuell in einer Meldung informiert, dass Designer das Skriptobjekt nicht auflösen kann.
Derselbe Fehler kann auftreten, wenn ein Syntaxproblem im Skriptobjekt auftritt.
11.7.9. Webdienstaufrufe
Verwenden Sie beim Erstellen von Webdienstaufrufen das postExecute-Ereignis, um die Rückgabe-
werte sowie etwaige Fehlermeldungen des Webdienstes anzuzeigen.
11.7.10. Lange SOM-Ausdrücke
Drücken Sie bei der Eingabe langer SOM-Ausdrücke mit mehreren Ebenen die Strg-Taste und
klicken Sie im Zeichenbereich auf das Objekt. Der Befehl fügt den SOM-Ausdruck des Objekts
in das Skript ein. Der SOM-Ausdruck ist relativ zu dem Objekt, in dem das Skript enthalten ist.
Um den absoluten SOM-Ausdruck einzufügen, drücken Sie die Tastenkombination Strg+Umschalt
und klicken Sie auf das Objekt. Diese Befehle sind nur aktiv, wenn Sie in der Entwurfsansicht auf
Objekte klicken. In der Hierarchieansicht sind sie deaktiviert.
11.7.11. SOM-Ausdrücke testen
Tritt ein Fehler bei einem langen SOM-Ausdruck auf, beginnen Sie beim Stamm des Ausdrucks und
testen Sie die einzelnen Punkte mit className bis Sie zum Problem gelangen. Beispiel, Testen
a.b.c.d indem Sie am Stamm beginnen:

• console.println(a.className)

• console.println(a.b.className)

• console.println(a.b.c.className)

• console.println(a.b.c.d.className)

Debugging von Berechnungen und Skripten
11.7.12. Skriptobjekte für das Debuggen von Formularentwürfen verwenden
Verwenden Sie ein Skriptobjekt (z. B. ein Fragment) als Hilfe beim Debuggen von Formularent-
würfen:

• Geben Sie den Dump einer Node-Hierarchie unter einer Node aus.

• Geben Sie den Wert einer Eigenschaft oder das Attribut einer Node aus.

• Geben Sie aus, ob für die Node eine Eigenschaft oder ein Attribut angegeben wurde.

• Geben Sie den SOM-Ausdruck einer Node aus.

• Entfernt die xml src eines bestimmten Knotens.

Beispiel eines Skriptobjekts mit verschiedenen Debugging-Funktionen:

<script contentType="application/x-javascript" name="XFADEBUG">
//Das Skriptobjekt stellt verschiedene Nachfolgefunktionen bereit, um das
Debuggen eines Formulardesigns zu unterstützen
//Platzieren Sie die Knotenhierarchie in die Konsole.println()
function printNode(node) {... }
//Platzieren Sie den SOM-Ausdruck in die Konsole.println() function
printSOM(node) {... }
//Platzieren Sie die Eigenschaft- oder AttributwertfunktionprintValue(node,
attrOrPropertyName) {...}
function printXMLSource(node) {}
function printHasPropertySpecified(node, prop) {...}\\
</script>
11.7.13. Beim Formularentwurf zu vermeidende Fehler
• Bei einem Aufruf von xfa.layout.relayout(). im docReady-Ereignis verur-
sacht oftmals Probleme, da das docReady Ereignis jeweils bei Fertigstellung des Layouts
ausgelöst wird.

• Das Platzieren eines Containers mit Textfluss in einem positionierten Container verursacht
Probleme mit Seitenumbrüchen, überlagerten Objekten und sich wiederholenden Teilformu-
laren. Das Stammteilformular ist ein Container mit Textfluss. Nutzen Sie diesen Vorteil und
platzieren Sie die Container mit Textfluss im Stammteilformular. Entfernen Sie die Teilformu-
lare der Seite nach Fertigstellung des Layouts. Stellen Sie alternativ dazu die Teilformulare der
Seite auf „Textfluss“ ein.

• Problem mit leeren Seiten (Acrobat 7.1 oder früher). Beim Entwurf des Formulars wird eine
leere Seite angezeigt, wenn das Teilformular nicht in die Begrenzung des Inhaltsbereichs passt.
Um das Problem mit der leeren Seite zu beheben, passen Sie entweder die Größe des Teilfor-
mulars an oder lassen Sie Umbrüche zwischen den Seiten zu. Verwendet der Benutzer Acrobat
7.1 oder früher, wird das Teilformular der zweiten Ebene auf einer anderen Seite angezeigt.
121

Mit Host-Anwendungen arbeiten 12
12. Mit Host-Anwendungen arbeiten
 122
Unter einer Host-Anwendung versteht man die Anwendung, in der ein Formular zu einem
bestimmten Zeitpunkt vorhanden ist.

Wenn Sie beispielsweise ein Formular mit Forms im HTML-Format wiedergeben, ist Forms in der
Phase vor dem Wiedergabeprozess die Host-Anwendung.

Sobald Sie ein Formular wiedergeben und in einer Client-Anwendung wie Acrobat, Adobe Reader
oder einem HTML-Browser anzeigen, wird die Client-Anwendung zur Host-Anwendung.

In Designer steht ein Skriptmodell mit Eigenschaften und Methoden zur Herstellung einer direkten
Verbindung zur Host-Anwendung zur Verfügung. Beispielsweise können Sie mit den Eigenschaften
und Methoden des Host-Skriptmodells in Acrobat oder Adobe Reader Navigationsaktionen für
PDF-Seiten bereitstellen sowie mit der importData -Methode Daten in ein Formular laden

Sie können die Host-Skriptmodellsyntax bei jedem gültigen Skriptereignis für Formularentwurfsob-
jekte mit der folgenden Syntax in FormCalc und JavaScript referenzieren:

xfa.host.property_or_method
12.1. Eigenschaften und Methoden des Host-Skriptmodells
Mit Hilfe der Eigenschaften und Methoden des Host-Skriptmodells können Sie Informationen
abrufen und Aktionen ausführen, die normalerweise über Berechnungen und Skripten nicht
zugänglich sind. Sie können etwa den Namen der Host-Anwendung abrufen (z. B. Acrobat) oder bei
einem interaktiven Formular von der aktuellen Seite aus weiterblättern. In der folgenden Tabelle
werden die für das Host-Skriptmodell verfügbaren Eigenschaften und Methoden aufgeführt.

Eigenschaften Methoden

appType beep

calculationsEnabled exportData

currentPage gotoURL

language importData

name messageBox

numPages pageDown

platform pageUp

Mit Host-Anwendungen arbeiten
Weitere Informationen zu den Eigenschaften und Methoden des Host-Skriptmodells finden Sie
im Developer Center.

title print

validationsEnabled resetData

variation response

version setFocus

Eigenschaften Methoden
12.2. Die Funktionalität des Host-Skriptmodells im Vergleich
In der folgenden Tabelle werden die Eigenschaften und Methoden des Host-Skriptmodells von
Designer aufgeführt und den entsprechenden Ausdrücken im JavaScript-Objektmodell von Acrobat
gegenübergestellt.

Weitere Informationen zu den Eigenschaften und Methoden des Host-Skriptmodells finden Sie
in der Designer-Hilfe oder unter Skriptreferenz.

Eigenschaften und Methoden des Host-Skriptmodells Acrobat-Entsprechungen im JavaScript-Objektmodell

xfa.host.appType app.viewerType

xfa.host.beep([INTEGER param]) app.beep([nType])

xfa.host.currentPage doc.pageNum

xfa.host.exportData([STRING param1
[, BOOLEAN param2]])

doc.exportXFAData(cPath [, bXDP])

xfa.host.gotoURL(STRING param1) doc.getURL(cURL, [bAppend])
oder
app.launchURL(URL);

xfa.host.importData([STRING param]) doc.importXFAData(cPath)

 xfa.host.language app.language

xfa.host.messageBox(STRING param1 [,
STRING param2 [, INTEGER param3 [,
INTEGER param4]]])

app.alert(cMsg [, nIcon [, nType [,
cTitle]]])

xfa.host.name Keine
123

http://www.adobe.com/devnet/livecycle.html
http://www.adobe.com/go/learn_aemforms_scriptingReference_62

Mit Host-Anwendungen arbeiten 12

 124
VERKNPFTE LINKS:
Objekte in Berechnungen und Skripten referenzieren

 xfa.host.numPages doc.numPages

 xfa.host.pageDown() doc.pageNum++

 xfa.host.pageUp() doc.pageNum--

 xfa.host.platform app.platform

xfa.host.print(BOOLEAN param1,
INTEGER param2, INTEGER param3,
BOOLEAN param4, BOOLEAN param5,
BOOLEAN param6, BOOLEAN param7,
BOOLEAN param8)

doc.print([bUI [, nStart [, nEnd [,
bSilent [, bShrinkToFit [,
bPrintAsImage [, bReverse [,
bAnnotations]]]]]]]])

xfa.host.resetData([STRING param]) doc.resetForm([aFields])

xfa.host.response(STRING param1 [,
STRING param2 [, STRING param3 [,
BOOLEAN param4]]])

app.response(cQuestion [, cTitle [,
cDefault [, bPassword]]])

xfa.host.setFocus(STRING param) field.setFocus()
(Nicht weiter unterstützt)

 xfa.host.title doc.title

 xfa.host.variation app.viewerVariation

 xfa.host.version app.viewerVersion

Eigenschaften und Methoden des Host-Skriptmodells Acrobat-Entsprechungen im JavaScript-Objektmodell

Mit dem Ereignismodell arbeiten
13. Mit dem Ereignismodell arbeiten
Im Ereignismodell werden Eigenschaften von Objektereignissen gespeichert. Diese Eigenschaften
sind dann nützlich, wenn Sie auf Werte zugreifen möchten, die außerhalb des Gültigkeitsbereichs
der Ereignisse liegen, die im Skript-Editor in der Liste „Anzeigen“ aufgeführt sind.

Das Ereignismodell steuert die Änderungen in einem Formular, die vor, während und nach
Aktionen ausgeführt werden. Zu diesen Aktionen zählen dynamische Formularereignisse,
wie z. B. der Zeitpunkt, zu dem die Daten und der Formularentwurf zusammengeführt werden,
jedoch bevor eine Paginierung angewendet wird, sowie interaktive Formularereignisse, wie z. B.
wenn ein Benutzer den Wert eines Felds aktualisiert.
13.1. Eigenschaften und Methoden des Ereignismodells
Mit Hilfe der Eigenschaften und Methoden des Ereignismodells können Sie Informationen abrufen
und Aktionen ausführen, die normalerweise nicht über Berechnungen und Skripten zugänglich
sind. Beispielsweise können Sie den vollständigen Wert eines Feldes abrufen, bei dem andernfalls ein
Teil der Daten wegfallen würde, da sie zu lang oder auf andere Weise ungültig sind. Dies ist dann
von Nutzen, wenn Sie eine umfassende Fehlerprüfung durchführen müssen.

Eigenschaften Methoden

change emit

className reset

commitKey

fullText

keyDown

modifier

name

newContentType

newText

prevContentType

prevText
125

http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7c9a.2.html
http://www.adobe.com/go/learn_aemforms_scriptingReference_62
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7c9c.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7ff4.2.html
http://help.adobe.com/en_US/livecycle/11.0/DesignerScriptingRef/WS92d06802c76abadb-3e14850712a151d270d-7c7a.2.html

Mit dem Ereignismodell arbeiten 13

 126
Weitere Informationen zu den Eigenschaften und Methoden des Ereignis-Skriptmodells finden Sie
im Developer Center.

reenter

selEnd

selStart

shift

soapFaultCode

soapFaultString

Ziel

Eigenschaften Methoden

http://www.adobe.com/devnet/livecycle.html

Von der Skripterstellung in Acrobat zu Designer wechseln
14. Von der Skripterstellung in Acrobat
zu Designer wechseln
In Designer steht eine breite Palette von Funktionen zur Skripterstellung zur Auswahl. Dazu
gehört auch die Unterstützung der gängigsten JavaScript-Objekte aus Acrobat. Wenn Sie ein
Acrobat-Formular in Designer konvertieren, funktionieren die meisten JavaScript-Skripten
weiterhin in der gewohnten Weise, ohne dass Änderungen erforderlich sind. Einige Java-
Script-Skripten müssen jedoch manuell aus Acrobat konvertiert werden, um zu gewährleisten,
dass die Funktionalität des Acrobat-Formulars erhalten bleibt.

Beim Konvertieren von Skripten in einem Acrobat-Formular sind einige Unterschiede zwischen
der Skripterstellung in Designer und der Skripterstellung in Acrobat zu beachten:

Designer-Arbeitsbereich
Sie können im Designer-Arbeitsbereich die Eigenschaften und Verhaltensweisen von Formu-
larobjekten ändern, ohne Skripten zu erstellen.

Skriptsprachen
Designer unterstützt neben JavaScript auch FormCalc, eine einfache Berechnungssprache. Mit
den in FormCalc integrierten Funktionen können zahlreiche nützliche Vorgänge ausgeführt
werden, für die anderenfalls ein erheblicher Skripterstellungsaufwand anfallen würde.

Referenzieren von Objekten, Eigenschaften und Methoden
Designer-Formulare sind hochgradig strukturiert. Daher müssen Sie zum Referenzieren
bestimmter Objekte, Eigenschaften oder Methoden die entsprechende Referenzsyntax in Ihr
Skript einbauen. Die Anweisungsende-Optionen im Skript-Editor erleichtern die Erstellung
der Referenz-Syntax.

JavaScript-Objekte, -Eigenschaften und -Methoden aus Acrobat können in Designer weiter
verwendet werden. Allerdings sollten Sie JavaScript aus Acrobat nur für Aufgaben einsetzen,
die Sie nicht mit dem XML-Formularobjektmodell in Designer ausführen können. Beispiels-
weise können Sie JavaScript aus Acrobat verwenden, um Anhänge, Lesezeichen oder Anmer-
kungen hinzuzufügen, ein Formular zu durchsuchen, die Rechtschreibung in einem Formular
zu prüfen, Berichte zu erstellen oder Metadaten abzurufen bzw. zu bearbeiten. JavaScript aus
Acrobat ist für Vorgänge wie das Festlegen von Feldwerten, das Hinzufügen neuer Felder
zu einem Formular sowie das Löschen von Seiten aus einem Formular ungeeignet.

HINWEIS: Einem Designer-Formular können in Acrobat keine JavaScript-Skripten hinzugefügt
werden. Dies gilt auch für Acrobat-Formulare, die mit Designer konvertiert wurden. Bei der
Anzeige eines Designer-Formulars in Acrobat sind keine JavaScript-Werkzeuge verfügbar.

Weitere Informationen über das Konvertieren von Acrobat in Designer finden Sie im Artikel
Konvertieren von Acrobat-JavaScript für die Verwendung in Designer Forms im Developer
Center.
127

http://www.adobe.com/go/learn_lc_AcrobatDeveloper

Von der Skripterstellung in Acrobat zu Designer wechseln 14
14.1. Acrobat-Formulare mit Skripten konvertieren
 128
Einer der ersten Schritte bei der Konvertierung eines Formulars aus Acrobat in Designer besteht
darin festzustellen, welcher Teil der Acrobat-Skripten von Designer unterstützt wird und welcher
Teil konvertiert werden muss.

In der Regel sollten Sie alle Acrobat-Skripten in entsprechende Designer-Skripten konvertieren.
In Designer werden der Entwurf und die Implementierung von Formularlösungen durch die
hochgradige Strukturierung der Designer-Formulare sowie durch nützliche formularspezifische
Funktionen beschleunigt und erleichtert.

Zu den Acrobat-Skripten, die Sie beibehalten sollten, gehören die Skripten, die für die Umgebung
und die Peripherievorgänge des Formulars zuständig sind. Dazu gehören das Hinzufügen von
Anhängen oder Multimedia, die Durchführung von Suchvorgängen, die Berichterstellung sowie
der Umgang mit Dokument-Metadaten.

Weitere Informationen über das Konvertieren von Acrobat in Designer finden Sie im Artikel
Konvertieren von Acrobat-JavaScript für die Verwendung in Designer Forms im Developer Center.

VERKNPFTE LINKS:
Von der Skripterstellung in Acrobat zu Designer wechseln
JavaScript-Objekte aus Acrobat in Designer verwenden
In Designer unterstützte JavaScript-Objekte aus Acrobat
14.2. JavaScript-Objekte aus Acrobat in Designer verwenden
In Designer können Sie mit Hilfe der Acrobat-Skriptsyntax Skripten für bestimmte JavaScript-Objekte
in Acrobat erstellen. Sie können daher die Eigenschaften und Methoden dieser Objekte in Ihren
Formularen verwenden. Wenn Sie beispielsweise eine Meldung in der JavaScript-Konsole von
Acrobat anzeigen möchten, können Sie dem Ereignis eines Formularentwurfsobjekts in Designer
das folgende Skript hinzufügen:

console.println(„Diese Meldung wird in der JavaScript-Konsole
angezeigt.“);

Sie können auch veranlassen, dass das Formular per E-Mail versendet wird. Fügen Sie dazu dem
click -Ereignis einer Schaltfläche Folgendes hinzu:

var myDoc = event.target;
myDoc.mailDoc(true);

HINWEIS: In Designer müssen Sie dafür sorgen, dass die Skriptsprache für das Ereignis auf JavaScript
eingestellt ist, damit das Skript zur Laufzeit korrekt ausgeführt wird.

http://www.adobe.com/go/learn_lc_AcrobatDeveloper

Von der Skripterstellung in Acrobat zu Designer wechseln
Sie können auch Verweise auf die JavaScript-Objekte in Acrobat in die Referenz-Syntax einbauen.
Beispielsweise ruft das folgende Skript den Unterschriftsstatus eines Unterschriftsfelds ab und führt
eine vom Status abhängige Aktion aus:

// Fahren Sie fort, wenn das aktuelle Feld nicht signiert wurde.
var oState =
event.target.getField("form1[0].#subform[0].SignatureField1[0]")
.signatureValidate(); //Rufen Sie den Signaturstatus des Felds auf.

if (oState == 0) {
...
}

HINWEIS: In diesem Beispiel wird für den Verweis auf den Text eine vollständig qualifizierte Referenz-
syntax verwendet. Weitere Informationen zum Referenzieren von Formularentwurfsobjekten finden
Sie unter Objekteigenschaften und -werte referenzieren.

Bei Verwendung von JavaScript aus Acrobat in Designer sind die folgenden Punkte zu beachten:

• Verwenden Sie in Designer event.target, um auf das Doc JavaScript-Objekte aus
Acrobat zuzugreifen. In Acrobat wird das this -Objekt zum Referenzieren von Doc -Objekten
verwendet; aber in Designer bezieht sich das this -Objekt auf das Formularentwurfsobjekt,
an welches das Skript angehängt ist.

• Im Skript-Editor stehen keine Anweisungsende-Optionen für JavaScript-Objekte aus Acrobat
zur Verfügung. Siehe JavaScript für Acrobat API-Referenz.

• Die Doc-Methode event.target.importTextData("file.txt") wird für dynamische
XFA-Formulare, die zertifiziert wurden, nicht unterstützt.

Weitere Informationen über das Konvertieren von Acrobat in Designer finden Sie im Artikel
Konvertieren von Acrobat-JavaScript für die Verwendung in Designer Forms im Developer
Center.

VERKNPFTE LINKS:
Von der Skripterstellung in Acrobat zu Designer wechseln
Acrobat-Formulare mit Skripten konvertieren
In Designer unterstützte JavaScript-Objekte aus Acrobat
14.3. In Designer unterstützte JavaScript-Objekte aus Acrobat
In der folgenden Tabelle finden Sie eine Übersicht über die Verfügbarkeit der am häufigsten verwen-
deten Acrobat-Objekte, -Eigenschaften und -Methoden in Designer und deren Entsprechungen
in Designer. Einige gängige -Objekte, -Eigenschaften und -Methoden fehlen in dieser Liste.
Beispielsweise sind keine Multimedia-Objekte aufgeführt, weil sie in Formularen nur sehr selten
vorkommen.
129

http://www.adobe.com/go/learn_lc_AcrobatDeveloper
http://www.adobe.com/go/learn_lc_AcrobatDeveloper

Von der Skripterstellung in Acrobat zu Designer wechseln 14

 130
Ist keine entsprechende Designer-Funktionalität aufgeführt, gibt es keine Designer-Eigenschaft oder
-Methode, mit welcher das Acrobat-Verhalten reproduziert werden kann. Sie können aber trotzdem
eigene Funktionen oder Skripten erstellen, welche die Acrobat-Funktionalität reproduzieren.

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare

Annot-Objekteigenschaften und -methoden

Alle Eigenschaften und Methoden Ja Kein Nur Formulare mit festem
Layout unterstützen die
Anmerkungsebene.

AppObjekteigenschaften

calculate Nein Kein Designer umfasst die
execCalculate
-Methode, die das
calculate -Ereignis
initiiert.
execCalculate

language Ja
xfa.host.langua
ge

Siehe language
zugreifen.
language

monitors Ja Kein

platform Ja
xfa.host.platfo
rm

Siehe platform
zugreifen.
platform

plugins Ja Kein

toolbar Ja Kein

viewerType Ja
xfa.host.appTyp
e

Siehe appType zugreifen.
appType

viewerVariation Ja
xfa.host.variat
ion

Siehe variation
zugreifen.
variation

viewerVersion Ja
xfa.host.versio
n

Siehe version zugreifen.
version

AppObjektmethoden

addMenuItem Ja Kein

Von der Skripterstellung in Acrobat zu Designer wechseln
addSubMenu Ja Kein

addToolButton Ja Kein

alert Ja xfa.host.messag
eBox()

Siehe messageBox
-Methode erstellen.
messageBox

beep Ja xfa.host.beep() Siehe beep -Methode
erstellen.
beep

browseForDoc Ja Kein

clearInterval Ja Kein

clearTimeOut Ja Kein

execDialog Ja Kein

execMenuItem Ja Kein Führt den angegebenen
Menübefehl aus.
Verwenden Sie diese
Methode in Designer für
Datei-Menübefehle.

getNthPluginName Ja Kein

getPath Ja Kein

goBack Ja Kein

goForward Ja Kein

hideMenuItem Ja Kein

hideToolbarButton Ja Kein

launchURL Ja Kein Designer umfasst die
gotoURL -Methode zum
Laden einer angegebenen
URL in die
Client-Anwendung wie
z. B. Acrobat oder Adobe
Reader.
gotoURL

listMenuItems Ja Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare
131

Von der Skripterstellung in Acrobat zu Designer wechseln 14

 132
listToolbarButtons Ja Kein

mailGetAddrs Ja Kein

mailMsg Ja Kein

newDoc Ja Kein Diese Methode kann
nur während
Stapelverarbeitungs-,
Konsolen- oder
Menüereignissen
ausgeführt werden.

newFDF Nein Kein

openDoc Ja Kein

openFDF Nein Kein

popUpMenuEx Ja Kein

popUpMenu Ja Kein

removeToolButton Ja Kein

response Ja xfa.host.respon
se()

Siehe response
-Methode erstellen.
response

setInterval Ja Kein

setTimeOut Ja Kein

trustedFunction Ja Kein

trustPropagatorFunction Ja Kein Diese Methode ist nur
während der
Stapelverarbeitungs-,
Konsolen- und
Anwendungsinitialisierung
verfügbar.

Lesezeichen - Objekteigenschaften und -methoden

Alle Eigenschaften und Methoden Ja Kein

docObjekteigenschaften

 author Ja Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare

Von der Skripterstellung in Acrobat zu Designer wechseln
baseURL Ja Kein

bookmarkRoot Ja Kein

calculate Nein Kein

dataObjects Ja Kein

delay Nein Kein

dirty Ja Kein Dieses JavaScript-Skript für
Designer speichert eine
Kopie eines Formulars und
prüft, ob sich das Formular
geändert hat.
var sOrigXML =
xfa.data.saveXML;
if (sOrigXML !=
xfa.data.saveXML)
{...}

disclosed Ja Kein

documentFileName Ja Kein

dynamicXFAForm Ja Kein

extern Ja Kein

filesize Ja Kein

Ausgeblendet Ja Kein

icons Ja Kein

keywords Ja Kein

layout Ja Kein

media Ja Kein

Metadaten Ja xfa.form.desc Siehe descObjekt.
desc

modDate Ja Kein

mouseX mouseY Ja Kein

noautocomplete Ja Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare
133

Von der Skripterstellung in Acrobat zu Designer wechseln 14

 134
nocache Ja Kein

numFields Ja xfa.layout.page
Content()

Die pageContent
-Methode gibt eine Liste
sämtlicher Objekte zurück,
die einem bestimmten Typ
angehören. Allerdings
müssen Sie die Methode für
Designansichten und
Masterseiten ausführen,
damit das gesamte
Formular durchsucht wird.
pageContent

numPages Ja
xfa.host.numPag
es
oder
xfa.layout.absP
ageCount()
xfa.layout.page
Count()

Die numPages
-Eigenschaft gibt die
Seitenanzahl des im
Client wiedergegebenen
Formulars zurück.
Weitere Informationen
über die Verarbeitung von
Anforderungen durch die
ID und das Festlegen von
IDs finden Sie im Abschnitt
absPageCount und
pageCount Methoden.
numPages
absPageCount
pageCount

pageNum Ja xfa.host.curren
tPage

Siehe currentPage
zugreifen.
currentPage

pageNum-- Ja xfa.host.curren
tPage--
oder
xfa.host.pageUp
()

Siehe currentPage
Eigenschaft oder pageUp
-Methode.
currentPage
pageUp

pageNum++ Ja xfa.host.curren
tPage++
oder
xfa.host.pageDo
wn()

Siehe currentPage
Eigenschaft oder
pageDown -Methode.
currentPage
pageDown

path Ja Kein

securityHandler Ja Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare

Von der Skripterstellung in Acrobat zu Designer wechseln
templates Nein Kein Verwenden Sie
Teilformularobjekte in
Designer. Verwenden
Sie Eigenschaften
und Methoden, um
Teilformularinstanzen
hinzuzufügen, zu
entfernen, zu verschieben
und einzurichten.
Teilformularinstanzen mit
Hilfe von Skripten
hinzufügen und entfernen

title Ja xfa.host.title Siehe title.

docObjektmethoden

addAnnot Ja Kein

addField Nein Kein Sie müssen Formulare mit
einem festen Layout
in Designer verwenden
und dann das i
instanceManager
Objekt verwenden, um die
Anzahl der Instanzen eines
bestimmten Objekts zu
entfernen, hinzuzufügen
und festzulegen.
instanceManager
Weitere Informationen
unter
Teilformularinstanzen mit
Hilfe von Skripten
hinzufügen und entfernen.

addIcon Ja Kein

addLink Nein Kein

addRecipientListCryptFi
lter

Ja Kein

addScript Ja Kein

addThumbnails Nein Kein

addWatermarkFromFile Ja Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare
135

Von der Skripterstellung in Acrobat zu Designer wechseln 14

 136
addWatermarkFromText Ja Kein

addWeblinks Ja Kein

appRightsSign Ja Kein

appRightsValidate Ja Kein

bringToFront Ja Kein

calculateNow Nein xfa.form.recalc
ulate(1);
oder
execCalculate()

recalculate
Die recalculate
-Methode erzwingt
die Initiierung eines
angegebenen Satzes
von Skripten in den
calculate
-Ereignissen. Der
boolesche Wert gibt an,
ob True (Standard) -
alle Berechnungsskripte
werden initiiert; oder
False - nur anstehende
Berechnungsskripten
werden initiiert).
Das Designer calculate
-Objekt steuert, ob ein
Benutzer beim Ausfüllen
den berechneten Wert eines
Feldes überschreiben darf.
execCalculate
Alternativ können Sie
die execCalculate
-Methode für jedes Objekt
verwenden, für das Sie eine
Neuberechnung erzwingen
möchten.

closeDoc Ja Kein

createDataObject Ja Kein

createTemplate Nein Kein Bei Designer-Formularen
gibt es keine Entsprechung
für Acrobat-Vorlagen.
In Designer müssen Sie
Teilformularobjekte
verwenden.

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare

Von der Skripterstellung in Acrobat zu Designer wechseln
deletePages Nein Kein instanceManager
In Designer können Sie
das instanceManager
-Objekt verwenden, um
das Teilformularobjekt
zu entfernen, das eine Seite
im Formular darstellt.
Weitere Informationen
unter
Teilformularinstanzen mit
Hilfe von Skripten
hinzufügen und entfernen.

embedDocAsDataObject Ja Kein

encryptForRecipients Ja Kein

encryptUsingPolicy Ja Kein

exportAsText Ja Kein Diese Methode ist nur
in der JavaScript-Konsole
des JavaScript-Debuggers
in Acrobat bzw. während
der Stapelverarbeitung
verfügbar.

exportAsFDF Nein xfa.host.export
Data()

exportData
Die exportData
-Methode exportiert
anstelle einer FDF-Datei
eine XML- oder
XDP-Datei.

exportAsXFDF Nein xfa.host.export
Data()

exportData
Die exportData
-Methode exportiert
anstelle einer FDF-Datei
eine XML- oder
XDP-Datei.

exportDataObject Ja Kein

exportXFAData Nein xfa.host.export
Data()

exportData
Die exportData
-Methode exportiert
anstelle einer FDF-Datei
eine XML- oder
XDP-Datei.

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare
137

Von der Skripterstellung in Acrobat zu Designer wechseln 14

 138
extractPages Nein Kein

flattenPages Nein Kein

getAnnot Ja Kein

getAnnots Ja Kein

getDataObjectContents Ja Kein

getField("Feldname") Ja xfa.resolveNode
("Feldname")

resolveNode
Die resolveNode
-Methode greift auf das
angegebene Objekt in der
XML-Quelle des Formulars
zu.

getLegalWarnings Ja Kein

getLinks Nein Kein

getNthFieldName Ja Sie müssen alle Objekte
mit einem ähnlichen
Klassennamen
durchlaufen, bis
dasn.-Vorkommen
erreicht ist.

className
Siehe className
zugreifen.

getNthTemplate Nein Kein

getOCGs Ja Kein

getOCGOrder Ja Kein

getPageBox Ja Kein

getPageLabel Ja Kein

getPageNthWord Ja Kein

getPageNthWordQuads Ja Kein

getPageNumWords Ja Kein

getPageRotation Ja Kein

getPrintParams Ja Kein

getTemplate Nein Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare

Von der Skripterstellung in Acrobat zu Designer wechseln
getURL Ja xfa.host.gotoUR
L(
"http://www.ado
be.com");

Siehe gotoURL
-Methode.
gotoURL

gotoNamedDest Nein Kein

importAnFDF Nein Kein

importAnXFDF Ja Kein

importDataObject Ja Kein

importIcon Ja Kein

importTextData Ja Kein

importXFAData Nein xfa.host.import
Data
("filename.xdp"
);

Siehe importData
-Methode.
importData

insertPages Nein Kein

mailDoc Ja Kein

mailForm Nein Kein

movePage Nein Kein

newPage Nein Kein

openDataObject Ja Kein

print Ja xfa.host.print(
);

Siehe print -Methode.
print

removeDataObject Ja Kein

removeField Nein Kein

removeIcon Ja Kein

removeLinks Nein Kein

removeScript Ja Kein

removeTemplate Nein Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare
139

Von der Skripterstellung in Acrobat zu Designer wechseln 14

 140
removeThumbnails Nein Kein

removeWeblinks Ja Kein

replacePages Nein Kein

resetForm Nein xfa.host.resetD
ata()
oder
xfa.event.reset
()

Die resetDataMethode
setzt alle Feldwerte in
einem Formular auf die
Standardwerte zurück.
Die reset -Methode setzt
alle Eigenschaften im
Ereignismodell zurück.
resetData
reset

saveAs Ja Kein In Designer muss die Datei
auf Anwendungsebene
gespeichert werden. Die
folgenden Skripten sind
Beispiele für die
Speicherung auf
Anwendungsebene:
app.executeMenuItem
("SaveAs");
oder
var myDoc =
event.target;
myDoc.saveAs();

spawnPageFromTemplate Nein Kein

setAction Nein Kein

setPageLabel Ja Kein

setPageRotation Nein Kein

setPageTabOrder Nein Kein Wählen Sie in Designer
„Bearbeiten“ >
„Tab-Reihenfolge“,
um die Tab-Reihenfolge
festzulegen.

setScript Nein Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare

Von der Skripterstellung in Acrobat zu Designer wechseln
submitForm Ja Verwenden Sie eines
der Senden-Schaltflä-
che-Objekte in
Designer.

EreignisObjekteigenschaften

change Ja xfa.event.change change
Siehe change zugreifen.

targetName Ja xfa.event.target Ziel
Siehe Ziel zugreifen.

fieldObjekteigenschaften

comb Nein Kein

charLimit Nein this.value.#tex
t.maxChars

Bei Formularen mit festem
Layout kann die maximale
Zeichenanzahl im
Designer-Arbeitsbereich
festgelegt werden.
Sie können Felder in
Formularen einstellen,
deren Layout an die
Datenmenge angepasst
wird.
maxChars

display = display.noView Nein Siehe Präsenz von For-
mularentwurfsobjekten
ändern.

presence
Sie können auch die
presence -Eigenschaft
im Designer-
Arbeitsbereich festlegen.
Sie können das prePrint
-Ereignis nicht verwenden,
um die Präsenz eines
Objekts vor dem Drucken
zu ändern.

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare
141

Von der Skripterstellung in Acrobat zu Designer wechseln 14

 142
display =
display.noPrint

Nein Siehe Präsenz von For-
mularentwurfsobjekten
ändern.

presence
Sie können auch die
presence -Eigenschaft
im Designer-
Arbeitsbereich festlegen.
Sie können das prePrint
-Ereignis nicht verwenden,
um die Präsenz eines
Objekts vor dem Drucken
zu ändern.

defaultValue Nein Kein Legt den
Standard-Feldwert im
Designer-Arbeitsbereich
fest.

exportValues Nein Kein Legt den Exportwert im
Designer-Arbeitsbereich
fest.

fillColor Nein xfa.form.Form1.
NumericField1.f
illColor

fillColor
Siehe fillColor
zugreifen.

Ausgeblendet Nein this.presence =
"invisible"
this. presence =
"visible"

presence
Sie können auch die
presence -Eigenschaft
im Designer-Arbeitsbereich
festlegen.

multiLine Nein this.ui.textEdi
t.multiLine =
"1";

multiLine
Siehe multiLine
zugreifen.

password Nein Kein Designer enthält ein
Kennwortfeld, das Sie für
Kennwörter in Formularen
verwenden können.

page Nein Kein Bei Designer-Formularen
nicht zutreffend.

print Nein this.relevant =
"-print";

relevant
Siehe relevant
zugreifen.

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare

Von der Skripterstellung in Acrobat zu Designer wechseln
radiosInUnison Nein Kein Gruppierte Optionsfelder
in Designer schließen sich
standardmäßig gegenseitig
aus.

rect Ja Sie können die Höhe
und Breite eines
Designer-Formularfelds
mit Hilfe der folgenden
Referenzsyntax
abrufen:
this.h; this.w;
Alternativ können
Sie die x- und
y-Koordinaten eines
Objekts mit der
folgenden
Referenz-Syntax
abrufen:
this.x; this.y;

h, x, y
Siehe h, w, x und y
properties.

Erforderlich Nein this.mandatory
= "error";
oder
this.validate.n
ullTest =
"error";

mandatory, nullTest
Siehe mandatory und
nullTest properties.

textColor Nein this.fontColor fontColor
Siehe fontColor
zugreifen.

textSize Nein this.font.size size
Siehe size zugreifen.

textFont Nein this.font.typef
ace

typeface
Siehe typeface
zugreifen.

value Nein this.rawValue rawValue
Siehe rawValue
zugreifen.
value
Designer-Felder haben eine
value -Funktion; Sie
ist nicht das Entsprechung
der Acrobat value
-Eigenschaft.

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare
143

Von der Skripterstellung in Acrobat zu Designer wechseln 14

 144
fieldObjektmethoden

clearItems Nein DropDownList1.c
learItems();

clearItems
Die clearItems
-Methode gilt nur für
Dropdown-Listen-
und Listenfeldobjekte
in Designer.

deleteItemAt Nein Kein

getItemAt Nein Kein

insertItemAt Nein DropDownList1.a
ddItem)

addItem
Siehe addItem -Methode.

isBoxChecked Nein if(CheckBox1.ra
wValue == 1)....

rawValue
Siehe rawValue
-Eigenschaft.

isDefaultChecked Nein Kein

setAction Nein Kein Bei Designer-Formularen
nicht zutreffend.

setFocus Ja xfa.host.setFoc
us
("TextField1.so
mExpression")

setFocus
Die setFocus -Methode
setzt voraus, dass das
angegebene Objekt einen
eindeutigen Namen hat
und nicht mit anderen
Formularobjekten
verwechselt werden kann.

setItems Nein Kein

setLock Ja Kein

signatureGetModificatio
ns

Ja Kein

signatureGetSeedValue Ja Kein

signatureInfo Ja Kein

signatureSetSeedValue Ja Kein

signatureSign Ja Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare

Von der Skripterstellung in Acrobat zu Designer wechseln
VERKNPFTE LINKS:
Mit dem Ereignismodell arbeiten

signatureValidate Ja Kein

searchObjektmethode

search.query("<your
text>");

Ja Keine Das “..” der
Kurzbefehlsyntax (zwei
Punkte, (..)) von FormCalc
können Sie das
XML-Formularobjektmode
ll nach Objekten
durchsuchen.
Weitere Informationen
unter
Referenz-Syntax-Kurzbefeh
le für FormCalc.

SOAPObjektmethode

Alle Eigenschaften und Methoden Ja Kein

JavaScript in Acrobat
Designer-Unter-

stützung
JavaScript-Entspre-
chung in Designer Kommentare
145

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15. Beispiele für gängige Aufgaben bei der
Skripterstellung
 146
Die Beispiele zur Skripterstellung veranschaulichen schnelle und einfache Techniken, die Sie auf
Ihre eigenen Projekte übertragen können.

Weitere Beispiele und Anregungen finden Sie unter Developer Center.
15.1. Hintergrundfarben von Feldern, Füllbereichen und
Teilformularen ändern
Dieses Beispiel zeigt, wie Sie die Hintergrundfarbe von Teilformularen, Feldern und Füllbereichen
in einem Formular als Reaktion auf Benutzeraktionen zur Laufzeit ändern.

In diesem Beispiel ändert sich die Hintergrundfarbe eines bestimmten Objekts, wenn der Benutzer
auf eine Schaltfläche klickt.

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung
HINWEIS: Um die Hintergrundfarbe von Objekten zur Laufzeit zu ändern, müssen Sie Ihr Formular
im Format "Acrobat (Dynamisch) XML-Formular" speichern.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.
15.1.1. Skripten für die Hintergrundfarben von Teilformularen und Textfeldern
Die Hintergrundfarben von Teilformularen und Textfeldern werden mit der fillColor
-Methode eingestellt. Beispielsweise stellt die folgende Zeile das Skript für das Teilformular dar:

Subform1.fillColor = "17,136,255";

Die folgenden Zeilen bilden das Skript für die Hintergrundfarbe der Textfelder:

Subform1.Name.fillColor = "102,179,255";
Subform1.Address.fillColor = "102,179,255";
Subform1.City.fillColor = "102,179,255";
Subform1.State.fillColor = "102,179,255";
Subform1.ZipCode.fillColor = "102,179,255";
Subform1.Country.fillColor = "102,179,255";
15.1.2. Skripterstellung für die Hintergrundfarbe von Füllbereichen
Beim Festlegen der Hintergrundfarbe oder des Füllbereichs für die einzelnen Textfelder müssen die
Skripten auf Eigenschaften zugreifen, die einen Referenz-Syntax-Ausdruck mit dem Nummernzei-
chen (#) erfordern. Da JavaScript das Nummernzeichen (#) in Referenz-Syntax-Ausdrücken nicht
richtig interpretiert, verwendet das Skript die resolveNode -Methode, um den Ausdruck zu lösen.
147

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung 15

 148
xfa.resolveNode("Subform1.Name.ui.#textEdit.border.fill.color").value =
"153,204,255";
xfa.resolveNode("Subform1.Address.ui.#textEdit.border.fill.color").value =
"153,204,255";
xfa.resolveNode("Subform1.City.ui.#textEdit.border.fill.color").value =
"153,204,255";
xfa.resolveNode("Subform1.State.ui.#textEdit.border.fill.color").value =
"153,204,255";
xfa.resolveNode("Subform1.ZipCode.ui.#textEdit.border.fill.color").value =
"153,204,255";
xfa.resolveNode("Subform1.Country.ui.#textEdit.border.fill.color").value =
"153,204,255";
15.1.3. Skripterstellung für die Schaltfläche „Alles löschen“
Das Skript für die Schaltfläche „Alles löschen“ verwendet die remerge Methode und führen Sie
den Formularentwurf und die Formulardaten erneut zusammen. In diesem Beispiel stellt die
Methode die Felder, Füllbereiche und Teilformulare in ihrem Originalzustand wieder her.

xfa.form.remerge();
15.2. Objekte ein- und ausblenden
Dieses Beispiel zeigt, wie Sie Schaltflächen beim Drucken eines Formulars ausblenden und wie Sie
Objekte durch Ändern der Präsenzwerte zur Laufzeit ein- und ausblenden.

HINWEIS: Sie können Objekte in Formularen mit flexiblem Layout auch über das Dialogfeld „Action
Builder“ im Menü „Extras“ ein- und ausblenden, ohne Skripten zu erstellen. Weitere Informationen
finden Sie unter Erstellen von Aktionen in Formularen

Beispiele für gängige Aufgaben bei der Skripterstellung
In diesem Beispiel sind alle Formularobjekte im Formular sichtbar.

Der Formularbenutzer kann mit den Dropdown-Listen im Bereich "Präsenzwerte" Objekte ein- oder
ausblenden. In der folgenden Abbildung ist das Feld "Adresse" ausgeblendet und das Formular-
layout entsprechend angepasst. Die Schaltfläche "Formular drucken" ist ebenfalls nicht sichtbar.
149

Beispiele für gängige Aufgaben bei der Skripterstellung 15

 150
HINWEIS: Um Objekte zur Laufzeit ein- und auszublenden, müssen Sie Ihr Formular im Format
"Acrobat (Dynamisch) XML-Formular" speichern.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.
15.2.1. Skripterstellung für die Präsenzwerte der Teilformulare
Das Skript für die Präsenzwerte der Teilformulare enthält eine switch-Anweisung zur Steuerung der
drei Präsenzoptionen, die ein Formularbenutzer dem Teilformularobjekt zuweisen kann:

switch(xfa.event.newText) {
case 'Invisible':
Subform1.presence = "invisible";
break;

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung
case 'Hidden (Exclude from Layout)':
Subform1.presence = "hidden";
break;
default: S
ubform1.presence = "visible";
break;
}

15.2.2. Skripten für die Präsenzwerte der Textfelder
Für das Skript für die Präsenzwerte der Textfelder sind zwei Variablen erforderlich. Die erste
Variable speichert die in Subform1 enthaltene Anzahl von Objekten:

var nSubLength = Subform1.nodes.length;

Die zweite Variable speichert den Namen des Textfelds, welches der Formularbenutzer in der Drop-
down-Liste "Textfelder" auswählt:

var sSelectField = fieldList.rawValue;

Das folgende Skript verwendet die replace -Methode, um alle Leerstellen aus dem Namen des
Felds zu entfernen, die in der sSelectField Variable gespeichert sind, wodurch der Wert der
Dropdown-Liste mit dem Namen des Objekt in der Palette „Verlauf“ übereinstimmt:

sSelectField = sSelectField.replace(' ', '');

Dieses Skript verwendet eine for Schleife, um zwischen allen Objekten, die in Subform1 enthalten
sind, zu wechseln:

für (var nCount = 0; nCount < nSubLength; nCount++) {

Wenn das aktuelle Objekt in Subform1 vom Typ field ist und das aktuelle Objekt denselben
Namen wie das Objekt hat, das der Formularbenutzer ausgewählt hat, wird Folgendes ausgeführt:

if ((Subform1.nodes.item(nCount).className == "field") &
(Subform1.nodes.item(nCount).name == sSelectField)) {

Das folgende Skript enthält eine switch-Anweisung zur Steuerung der drei Präsenzoptionen, die ein
Formularbenutzer den Textfeldobjekten zuweisen kann:

switch(xfa.event.newText) {
case 'Invisible':
Subform1.nodes.item(nCount).presence = "invisible";
break;
case 'Hidden (Exclude from Layout)':
Subform1.nodes.item(nCount).presence = "hidden";
break;
default:
Subform1.nodes.item(nCount).presence = "visible";
break;
}
}
}

151

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.2.3. Skripten für die Präsenzwerte der Schaltflächen
 152
Für das Skript für die Präsenzwerte der Schaltflächen sind zwei Variablen erforderlich. Diese Variable
speichert die in Subform1 enthaltene Anzahl von Objekten:

var nSubLength = Subform1.nodes.length;

Diese Variable speichert den Namen der Schaltfläche, welche der Formularbenutzer in der Drop-
down-Liste "Schaltflächen" auswählt:

var sSelectButton = buttonList.rawValue;

Das folgende Skript verwendet die replace -Methode, um alle Leerstellen aus dem Namen der
Schaltfläche zu entfernen, die in der sSelectField -Variablen gespeichert sind, wodurch der
Wert der Dropdown-Liste mit dem Namen des Objekt in der Palette „Verlauf“ übereinstimmt:

sSelectButton = sSelecButton.replace(/\s/g, '');

Dieses Skript verwendet eine for Schleife, um zwischen allen Objekten, die in Subform1 enthalten
sind, zu wechseln:

für (var nCount = 0; nCount < nSubLength; nCount++) {

Wenn das aktuelle Objekt in Subform1 vom Typ field ist und denselben Namen wie das Objekt
hat, das der Formularbenutzer ausgewählt hat, wird Folgendes ausgeführt:

if ((Subform1.nodes.item(nCount).className == "field") &
Subform1.nodes.item(nCount).name == sSelectButton)) {

Dieses Skript verwendet eine switch -Anweisung zur Steuerung der fünf Präsenzwerte, die ein
Formularbenutzer den Schaltflächenobjekten zuweisen kann.

HINWEIS: Die relevante Eigenschaft gibt jeweils an, ob ein Objekt beim Drucken des Formulars
sichtbar sein soll.
switch(xfa.event.newText) {
case 'Invisible':
Subform1.nodes.item(nCount).presence = "invisible";
break;
case 'Hidden (Exclude from Layout)':
Subform1.nodes.item(nCount).presence = "hidden";
break;
case 'Visible (but Don\'t Print)':
Subform1.nodes.item(nCount).presence = "visible";
Subform1.nodes.item(nCount).relevant = "-print";
break;
case 'Invisible (but Print Anyway)':
Subform1.nodes.item(nCount).presence = "invisible";
Subform1.nodes.item(nCount).relevant = "+print";
break;
default:
Subform1.nodes.item(nCount).presence = "visible"; break;
}
}
}

Beispiele für gängige Aufgaben bei der Skripterstellung
15.2.4. Skripterstellung für die Zurücksetzung der Dropdown-Listen
Verwenden Sie die resetData -Methode, damit alle Dropdownlisten auf ihre Standardwerte
zurückgesetzt werden:

xfa.host.resetData();

Verwenden Sie die remerge Methode und führen Sie den Formularentwurf und die Formular-
daten erneut zusammen. In diesem Beispiel stellt die Methode die Objekte im Bereich "Formularob-
jekte" in ihrem Originalzustand wieder her.

xfa.form.remerge();
15.3. Objekte aus der Tab-Reihenfolge ausschließen
Dieses Beispiel demonstriert, wie Sie ein Objekt aus der standardmäßigen Tab-Reihenfolge
ausschließen. In diesem Beispiel beginnt der Benutzer im TextField1 und navigiert anschließend
mit der Tabulatortaste zu TextField2 und TextField3. Das Dropdown-Listenobjekt DropDownList1
wird angezeigt, wenn der Cursor in TextField2 gesetzt wird.

In diesem Fall navigiert der Benutzer standardmäßig in der folgenden Reihenfolge durch das Formular:
153

Beispiele für gängige Aufgaben bei der Skripterstellung 15

 154
Fügen Sie die folgenden Skripten zum Objekt TextField2 hinzu, um das Objekt DropDownList1 aus
der Tab-Reihenfolge auszuschließen:

Ereignis Skript

enter // Diese bedingte Anweisung zeigt DropDownList3 dem Benutzer //
und legt den Fokus auf die Client-Anwendung TextField2. if
(DropDownList3.presence != "visible") { DropDownList3.presence =
"visible"; xfa.host.setFocus(this); }

exit // Diese bedingte Anweisung überprüft, ob der Benutzer während dem
// Drücken der Tabulatortaste die Umschalttaste drückt. Wird die
Umschalttaste // gedrückt, legt die Kundenanwendung den Fokus auf
// TextField1 zurück, ansonsten wird der Fokus auf TextField3
gelegt. Der // Benutzer erkennt an diesen Vorgang, dass die
DropDownList3 kein // Teil der Tabulatorreihenfolge ist. var
isShiftDown = xfa.event.shift; if (isShiftDown) {
xfa.host.setFocus(TextField1); } else {
xfa.host.setFocus(textField3); }
15.4. Visuelle Eigenschaften von Objekten im Client ändern
Dieses Beispiel zeigt, wie Sie die visuellen Eigenschaften eines Objekts (in diesem Fall ein Textfeld)
ändern. Wenn ein Benutzer beispielsweise das Kontrollkästchen "Feldbreite vergrößern" aktiviert,
wird der Füllbereich des Textfelds auf vier Zoll erweitert.

Beispiele für gängige Aufgaben bei der Skripterstellung
HINWEIS: Um die visuellen Eigenschaften von Objekten auf dem Client zu ändern, müssen Sie Ihr
Formular im Format „Acrobat (Dynamisch) XML-Formular“ speichern.

In diesem Beispiel haben die Kontrollkästchen keine eindeutigen Objektnamen. Designer weist
daher einen Instanzwert zu, damit ein Objekt referenziert werden kann. Das Skript für Kontrollkäst-
chen enthält eine if-else -Anweisung, um die Aktivierung und Deaktivierung zu ermöglichen.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.
15.4.1. Skripten für das Kontrollkästchen "Feld verschieben"
Wenn das Kontrollkästchen aktiviert wird, wird das Feld den x- und y-Einstellungen entsprechend
verschoben. Wenn das Kontrollkästchen deaktiviert wird, wird das Feld an seine ursprüngliche
Position zurückgesetzt.

if (CheckBox1.rawValue == true) {
TextField.x = "3.0in";
TextField.y = "3.5in";
}
else
{
TextField.x = "1in";
TextField.y = "3in";
}

15.4.2. Skripten für das Kontrollkästchen "Feldbreite vergrößern"
Wenn das Kontrollkästchen aktiviert wird, wird die Feldbreite auf 4 Zoll erhöht. Wenn das
Kontrollkästchen deaktiviert wird, wird die Feldbreite auf 2,5 Zoll verringert.

if (CheckBox2.rawValue == true)
TextField.w = "4in";
else
TextField.w = "2.5in";
15.4.3. Skripterstellung für das Kontrollkästchen „Feldhöhe vergrößern“
Wenn das Kontrollkästchen aktiviert wird, wird die Feldhöhe auf 1,5 Zoll gesteigert. Wenn das
Kontrollkästchen deaktiviert wird, wird die Feldhöhe auf 0,5 Zoll verringert.

if (CheckBox3.rawValue == true)
TextField.h = "1.5in";
else
TextField.h = "0.5in";
155

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.4.4. Skripten für das Kontrollkästchen "Objektrandfarbe ändern"
 156
Wenn das Kontrollkästchen aktiviert wird, wird dem Feldrand die Farbe Rot zugewiesen. Wenn
das Kontrollkästchen deaktiviert wird, wird dem Feldrand die Farbe Weiß zugewiesen.

if (CheckBox4.rawValue == true)
TextField.border.edge.color.value = "255,0,0";
else
TextField.border.edge.color.value = "255,255,255";
15.4.5. Skripten für das Kontrollkästchen "Füllfarbe des ausfüllbaren Bereichs
ändern"
Wenn das Kontrollkästchen aktiviert wird, wird dem Füllbereich des Textfelds die Farbe Grün zuge-
wiesen. Wenn das Kontrollkästchen deaktiviert wird, wird dem Füllbereich des Textfelds die Farbe
Weiß zugewiesen.

if (CheckBox5.rawValue == true) {
xfa.resolveNode("TextField.ui.#textEdit.border.fill.color").value = "0,255,0";
}
else {
xfa.resolveNode("TextField.ui.#textEdit.border.fill.color").value =
"255,255,255";
}

15.4.6. Skripterstellung für das Kontrollkästchen „Passend auf Breite des Werts
erweitern“
Wenn das Kontrollkästchen aktiviert wird, wird der Füllbereich des Textfelds an den Wert angepasst.
Wenn das Kontrollkästchen deaktiviert wird, wird der Füllbereich des Textfelds nicht an den Wert
angepasst.

if (CheckBox6.rawValue == true)
TextField.minW = "0.25in";
else
TextField.maxW = "2.5in";
15.4.7. Skripterstellung für das Kontrollkästchen „Feld ausblenden“
Wenn das Kontrollkästchen aktiviert wird, wird das Feld ausgeblendet. Wenn das Kontrollkästchen
deaktiviert wird, ist das Feld sichtbar.

if (CheckBox7.rawValue == true)
TextField.presence = "hidden";
else
TextField.presence = "visible";

Beispiele für gängige Aufgaben bei der Skripterstellung
15.4.8. Skripten für das Kontrollkästchen "Schrift des Werts ändern"
Wenn das Kontrollkästchen aktiviert wird, wird dem Wert die Schrift Courier New zugewiesen.
Wenn das Kontrollkästchen deaktiviert wird, wird dem Wert die Schrift Myriad Pro zugewiesen.

if (CheckBox8.rawValue == true)
TextField.font.typeface = "Courier New";
else
TextField.font.typeface = "Myriad Pro";
15.4.9. Skripterstellung für das Kontrollkästchen „Schriftgröße ändern“
Wenn das Kontrollkästchen aktiviert wird, wird die Schriftgröße auf 14 Pt eingestellt. Wenn das
Kontrollkästchen deaktiviert wird, wird die Schriftgröße auf 10 Pt eingestellt.

if (CheckBox9.rawValue == true)
TextField.font.size = "14pt";
else
TextField.font.size = "10pt";
15.4.10. Skripterstellung für das Kontrollkästchen „Textfeldwert vertikal
ausrichten“
Wenn das Kontrollkästchen aktiviert wird, wird der Textfeldwert an der oberen Kante ausgerichtet.
Wenn das Kontrollkästchen deaktiviert wird, wird der Textfeldwert an der Mitte ausgerichtet.

if (CheckBox10.rawValue == true)
TextField.para.vAlign = "top";
else
TextField.para.vAlign = "middle";
15.4.11. Skripterstellung für das Kontrollkästchen „Textfeldwert horizontal
ausrichten“
Wenn das Kontrollkästchen aktiviert wird, wird der Textfeldwert an der Mitte ausgerichtet. Wenn
das Kontrollkästchen deaktiviert wird, wird der Textfeldwert an der linken Kante ausgerichtet.

if (CheckBox11.rawValue == true)
TextField.para.hAlign = "center";
else
TextField.para.hAlign = "left";
157

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.4.12. Skripterstellung für das Kontrollkästchen „Vorgegebenen Wert
anzeigen“
 158
Wenn das Kontrollkästchen aktiviert wird, wird im Textfeld ein durch ein Skript definierter Wert
angezeigt. Wenn das Kontrollkästchen deaktiviert wird, wird im Textfeld der (ebenfalls durch ein
Skript definierte) Standardwert angezeigt.

if (CheckBox12.rawValue == true)
TextField.rawValue = "This is a value set using a script.";
else
TextField.rawValue = "Dies ist ein Standardwert.";
15.4.13. Skripten für das Kontrollkästchen "Beschriftungstext ändern"
Wenn das Kontrollkästchen aktiviert wird, wird der durch ein Skript definierte, alternative Beschrif-
tungstext angezeigt. Wenn das Kontrollkästchen deaktiviert wird, wird die (ebenfalls durch ein Skript
definierte) Standardbeschriftung angezeigt.

if (CheckBox13.rawValue == true)
xfa.resolveNode("TextField.caption.value.#text").value = "Alternate Caption:";
else
xfa.resolveNode("TextField.caption.value.#text").value = "Caption:";
15.4.14. Skripterstellung für das Kontrollkästchen „Feldrand von 3D in ausge-
fülltes Rechteck ändern“
Wenn das Kontrollkästchen aktiviert wird, wird der Feldrand in ein ausgefülltes Rechteck geändert.
Wenn das Kontrollkästchen deaktiviert wird, wird dem Feldrand ein 3D-Stil zugewiesen.

if (CheckBox14.rawValue == true)
xfa.resolveNode("TextField.ui.#textEdit.border.edge").stroke = "solid";
else
xfa.resolveNode("TextField.ui.#textEdit.border.edge").stroke = "lowered";
15.4.15. Skripten für die Schaltfläche "Alle Kontrollkästchen deaktivieren"
Verwenden Sie die resetData -Methode, um sämtliche Kontrollkästchen auf ihren Standardwert
(Aus) zurücksetzen.

xfa.host.resetData();

Verwenden Sie die remerge Methode und führen Sie den Formularentwurf und die Formular-
daten erneut zusammen. In diesem Fall stellt die Methode das Textfeld in seinem Originalzustand
wieder her.

xfa.form.remerge();

Beispiele für gängige Aufgaben bei der Skripterstellung
15.5. Aktuellen oder vorherigen Wert einer Dropdown-Liste
abrufen
Dieses Beispiel zeigt, wie Sie den aktuellen Wert einer Dropdown-Liste abrufen und welche
Möglichkeiten Sie haben, auf den vorherigen Wert einer Dropdown-Liste in einem Formular zuzu-
greifen. Abgesehen von den eigentlichen Skripten, durch die die aktuellen und vorherigen Werte
festgelegt werden, ist auch wichtig, dass sich die Skripten im change Ereignis für die Dropdown-
liste befinden.

Im folgenden Beispiel wird, wenn ein Formularbenutzer in der Dropdown-Liste einen Wert
auswählt, der ausgewählte Wert im Feld "Aktueller Wert" angezeigt. Wenn der Formularbenutzer
dann einen anderen Wert in der Dropdown-Liste auswählt, wird dieser neue Wert in der Liste
"Aktueller Wert" angezeigt und der vorherige Wert im Feld "Vorheriger Wert 1".

HINWEIS: Die verschiedenen Methoden zum Abrufen des vorherigen Wertes einer Dropdown-Liste
beruhen jeweils auf einem anderen Skript. Das Textfeld „Vorheriger Wert 1“ wird durch eine direkte
Referenz auf die rawValue -Eigenschaft der Dropdown-Liste befüllt, wobei das Textfeld „Vorheriger
Wert 2“ hingegen mit der prevText Eigenschaft befüllt wird. Damit Sie konsistente Ergebnisse
erzielen, sollten Sie auf den vorherigen Wert über die Eigenschaft prevText zugreifen.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.
15.5.1. Skripterstellung zum Ausfüllen des Textfelds „Aktueller Wert“
Wenn Sie das Textfeld „Aktueller Wert“ befüllen möchten, verwenden Sie die newText -Eigenschaft:

CurrentValue.rawValue = xfa.event.newText;
159

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.5.2. Skripten zum Ausfüllen des Textfelds "Vorheriger Wert 1"
 160
Wenn Sie das Textfeld „Vorheriger Wert 1“ befüllen möchten, verwenden Sie rawValue Drop-
downliste aus:

PreviousValue1.rawValue = DropDownList.rawValue;
15.5.3. Skripten zum Ausfüllen des Textfelds "Vorheriger Wert 2"
Wenn Sie das Textfeld „Vorheriger Wert 2“ ausfüllen möchten, verwenden Sie die prevText
-Eigenschaft:

PreviousValue2.rawValue = xfa.event.prevText;
15.6. Beim Kopieren von Feldwerten die
Rich-Text-Formatierung beibehalten
Dieses Beispiel demonstriert, wie Sie die Rich-Text-Formatierung von Felddaten beim Kopieren von
Werten zwischen Feldern beibehalten.

TextField1 und TextField2 sind so konfiguriert, dass mehrere Zeilen zugelassen werden. Außerdem
zeigen die Felder die Rich-Text-Formatierung an.

Die Schaltfläche „Rich-Text kopieren“ kopiert den Wert von TextField1, einschließlich der
Rich-Text-Formatierung, und fügt ihn in TextField2 ein.

Beispiele für gängige Aufgaben bei der Skripterstellung
15.6.1. Skripten für die Schaltfläche „Rich-Text kopieren“
Rich-Text-Feldwerte werden im XML-Format in einem untergeordneten Objekt des Felds gespei-
chert, das den Wert enthält. Das folgende Skript im click-Ereignis der Schaltfläche „Rich-Text
kopieren“ verwendet die saveXML-Methode zum Speichern der XML-Definition des
Rich-Text-Werts. Anschließend werden die XML-Daten in das entsprechende untergeordnete
Objekt von TextField2 geladen.

var richText = TextField1.value.exData.saveXML();
TextField2.value.exData.loadXML(richText,1,1);

In diesem Beispiel überschreibt der Rich-Text-Wert den bestehenden Wert von TextField2. Wenn
Sie das Skript wie folgt anpassen, werden die Rich-Text-Daten an den aktuellen Wert von TextField2
angehängt:

var richText = TextField1.value.exData.saveXML();
TextField2.value.exData.loadXML(richText,1,0);
15.7. Höhe eines Feldes zur Laufzeit anpassen
Dieses Beispiel zeigt, wie Sie ein Feld erweitern, um es an die Höhe des Inhalts in einem anderen Feld
anzupassen.

In diesem Beispiel wird, wenn der Formularbenutzer in TextField1 mehrere Zeilen eingibt und dann
auf die Schaltfläche "Erweitern" klickt, die Höhe von TextField2 vergrößert und somit an die Höhe
von TextField1 angepasst.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.
15.7.1. Skripten für die Schaltfläche "Erweitern"
Das folgende Skript wurde für die Schaltfläche "Erweitern" erstellt:

var newHeight = xfa.layout.h(TextField1, "in");
TextField2.h = newHeight + "in";
161

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.8. Felder zur Laufzeit als „Erforderlich“ festlegen
 162
Dieses Beispiel zeigt, wie Sie ein Feld zur Laufzeit als "Erforderlich" festlegen.

In diesem Beispiel wird eine entsprechende Fehlermeldung eingeblendet, wenn auf die Schaltfläche
"Als 'Erforderlich' festlegen" geklickt wurde und ein Formularbenutzer versucht, ein Formular
zu senden, ohne vorher das Feld "TextField1" auszufüllen.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.
15.8.1. Skripten für die Schaltfläche "Als 'Erforderlich' festlegen"
Das folgende Skript wurde für die Schaltfläche "Als 'Erforderlich' festlegen" erstellt:

TextField1.validate.nullTest = "error";

Alternativ können Sie auch eines der beiden folgenden Skripten verwenden:

TextField1.mandatory = "error"
TextField1.mandatoryMessage = "this field is mandatory!"

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung
15.9. Feldsummen berechnen
Dieses Beispiel zeigt, wie Sie die Summen von Feldern auf unterschiedlichen Ebenen der Formular-
hierarchie berechnen, wenn der Formularbenutzer das Formular in einer Client-Anwendung wie
Acrobat Professional, Adobe Reader oder einem HTML-Client öffnet.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.
15.9.1. Skripten zur Berechnung der Summe sich wiederholender Felder
in einem Formular
Um die Summe sich wiederholender Felder in einem Formular zu berechnen, fügen Sie das calcu-
late -Ereignis in das Summenfeld hinzu:

var fields = xfa.resolveNodes("NumericField1[*]");

var total = 0;
for (var i=0; i <= fields.length-1; i++) {
total = total + fields.item(i).rawValue;
}

this.rawValue = total;
15.9.2. Skripten zur Berechnung der Summe sich wiederholender Felder
Zur Berechnung der Summe sich wiederholender Felder fügen Sie das calculate -Ereignis in das
Summenfeld hinzu:

var fields = xfa.resolveNodes("detail[*].NumericField1");

var total = 0;
for (var i=0; i <= fields.length-1; i++) {
total = total + fields.item(i).rawValue;
}

this.rawValue = total;
163

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.9.3. Skripten zur Berechnung der Summe der Felder auf der Seite
 164
Um die Summe der Felder auf der Seite zu berechnen, fügen Sie ein calculate -Ereignis in das
Summenfeld hinzu:

var fields = xfa.layout.pageContent(0 , "field", 0);

var total = 0;
for (var i=0; i <= fields.length-1; i++) {
if (fields.item(i).name == "NumericField1") {
total = total + fields.item(i).rawValue;
}
}

this.rawValue = total;
15.10. Felder als Reaktion auf Benutzeraktionen hervorheben
Dieses Beispiel zeigt, wie Sie das aktuelle Feld hervorheben, das ein Formularbenutzer gerade bear-
beitet, wie Sie die Felder hervorheben, die Formularbenutzer ausfüllen müssen, und wie Sie den
Formularbenutzern Feedback in Form von Meldungsfeldern geben können.

In diesem Beispiel erscheint rechts neben den erforderlichen Feldern ein Sternchen (*). Bei Auswahl
eines Felds wird dem Feldrand die Farbe Blau zugewiesen. Wenn ein Formularbenutzer auf die
Schaltfläche "Daten überprüfen" klickt, aber nicht alle erforderlichen Felder ausgefüllt hat, wird eine
Meldung angezeigt und das entsprechende Feld rot markiert. Wenn alle erforderlichen Felder ausge-
füllt wurden und der Formularbenutzer auf die Schaltfläche "Daten überprüfen" klickt, wird eine
Bestätigungsmeldung eingeblendet.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung
15.10.1. Skripten zum Kennzeichnen eines ausgewählten Feldes mit einem
blauen Rand
Zum Kennzeichnen des ausgewählten Feldes durch einen blauen Rand fügen Sie allen Textfeldern
die folgenden Skripten hinzu:

Geben Sie beispielsweise ein enter -Ereignis in das Feld „Name“ ein:

Name.border.edge.color.value = "0,0,255";

Geben Sie beispielsweise ein exit -Ereignis in das Feld „Name“ ein:

Name.border.edge.color.value = "255,255,255";

Fügen Sie beispielsweise ein mouseEnter -Ereignis in das Feld „Name“ ein:

Name.border.edge.color.value = "0,0,255";

Fügen Sie beispielsweise ein mouseExit -Ereignis in das Feld „Name“ ein:

Name.border.edge.color.value = "255,255,255";
15.10.2. Skripten für die Schaltfläche "Daten überprüfen"
Das folgende Skript, das speziell für die Schaltfläche "Daten überprüfen" konzipiert wurde, stellt
anhand einiger Überprüfungsschritte fest, ob die erforderlichen Felder Daten enthalten. Dabei wird
jedes Feld einzeln überprüft und festgestellt, ob der Feldwert nicht null oder eine leere Zeichenfolge
ist. Ist der Feldwert null oder eine leere Zeichenfolge, wird ein Hinweis eingeblendet, welcher den
Benutzer daran erinnert, dass dieses Feld ausgefüllt werden muss. Gleichzeitig wird die Hinter-
grundfarbe des Füllbereichs in Rot geändert.

Verwenden Sie diese Variable, um anzugeben, ob ein Feld keine Daten enthält:

var iVar = 0;

if ((Name.rawValue == null) || (Name.rawValue == "")) {
xfa.host.messageBox("Geben Sie einen Namenin das Feld „Name“ ein.);

Dieses Skript ändert die Farbe des Füllbereichs des Textfelds:

xfa.resolveNode("Name.ui.#textEdit.border.edge").stroke = "solid";
xfa.resolveNode("Name.ui.#textEdit.border.fill.color").value = "255,100,50";

// Legen Sie die Variable fest, um anzuzeigen, dass dieses Feld keine Daten
enthält. iVar = 1;
}
else
{
// Setzen Sie den füllbaren Bereich des Textfelds zurück.
xfa.resolveNode("Name.ui.#textEdit.border.edge").stroke = "lowered";
xfa.resolveNode("Name.ui.#textEdit.border.fill.color").value = "255,255,255";
}
165

Beispiele für gängige Aufgaben bei der Skripterstellung 15

 166
if ((Address.rawValue == null) || (Address.rawValue == "")) {
xfa.host.messageBox("Please enter a value in the Address field.");

Dieses Skript ändert die Farbe des Füllbereichs des Textfelds:

xfa.resolveNode ("Address.ui.#textEdit.border.edge").stroke = "solid";
xfa.resolveNode("Address.ui.#textEdit.border.fill.color").value = "255,100,50";

Dieses Skript stellt die Variable ein, die angibt, dass dieses Feld keine Daten enthält:

iVar = 1;
}
else {

Dieses Skript setzt den Füllbereich des Textfelds zurück:

xfa.resolveNode ("Address.ui.#textEdit.border.edge").stroke = "lowered";
xfa.resolveNode("Address.ui.#textEdit.border.fill.color").value =
"255,255,255";
}

if ((City.rawValue == null) || (City.rawValue == "")) {
xfa.host.messageBox("Please enter a value in the City field.");

Dieses Skript ändert die Farbe des Füllbereichs des Textfelds:

xfa.resolveNode("City.ui.#textEdit.border.edge").stroke = "solid";
xfa.resolveNode("City.ui.#textEdit.border.fill.color").value = "255,100,50";

Dieses Skript stellt die Variable ein, die angibt, dass dieses Feld keine Daten enthält:

iVar = 1;
}
else {

Dieses Skript setzt den Füllbereich des Textfelds zurück:

xfa.resolveNode("City.ui.#textEdit.border.edge").stroke = "lowered";
xfa.resolveNode("City.ui.#textEdit.border.fill.color").value = "255,255,255";
}

if ((State.rawValue == null) || (State.rawValue == "")) {
xfa.host.messageBox("Please enter a value in the State field.");

Dieses Skript ändert die Farbe des Füllbereichs des Textfelds:

xfa.resolveNode("State.ui.#textEdit.border.edge").stroke = "solid";
xfa.resolveNode("State.ui.#textEdit.border.fill.color").value = "255,100,50";

Dieses Skript stellt die Variable ein, die angibt, dass dieses Feld keine Daten enthält:

iVar = 1;
}
else {

Beispiele für gängige Aufgaben bei der Skripterstellung
Dieses Skript setzt den Füllbereich des Textfelds zurück:

xfa.resolveNode("State.ui.#textEdit.border.edge").stroke = "lowered";
xfa.resolveNode("State.ui.#textEdit.border.fill.color").value = "255,255,255";
}

if ((ZipCode.rawValue == null) || (ZipCode.rawValue == "")) {
xfa.host.messageBox("PGeben Sie einen Wert in das Feld für die Postleitzahl
ein.");

Dieses Skript ändert die Farbe des Füllbereichs des Textfelds:

xfa.resolveNode("ZipCode.ui.#textEdit.border.edge").stroke = "solid";
xfa.resolveNode("ZipCode.ui.#textEdit.border.fill.color").value = "255,100,50";

Dieses Skript stellt die Variable ein, die angibt, dass dieses Feld keine Daten enthält:

iVar = 1;
}
else {

Dieses Skript setzt den Füllbereich des Textfelds zurück:

xfa.resolveNode("ZipCode.ui.#textEdit.border.edge").stroke = "lowered";
xfa.resolveNode("ZipCode.ui.#textEdit.border.fill.color").value =
"255,255,255";
}

if ((Country.rawValue == null) || (Country.rawValue == "")) {
xfa.host.messageBox("Geben Sie einen Wert in das Feld für das Land ein.");

Dieses Skript ändert die Farbe des Füllbereichs des Textfelds:

xfa.resolveNode("Country.ui.#textEdit.border.edge").stroke = "solid";
xfa.resolveNode("Country.ui.#textEdit.border.fill.color").value = "255,100,50";

Dieses Skript stellt die Variable ein, die angibt, dass dieses Feld keine Daten enthält.

iVar = 1;
}
else {

Dieses Skript setzt den Füllbereich des Textfelds zurück:

xfa.resolveNode("Country.ui.#textEdit.border.edge").stroke = "lowered";
xfa.resolveNode("Country.ui.#textEdit.border.fill.color").value =
"255,255,255"; }

Wenn alle erforderlichen Felder Daten enthalten, wird die iVar Variable auf null gesetzt und eine
Bestätigungsmeldung angezeigt:

if (iVar == 0) {
xfa.host.messageBox("Vielen Dank für die Eingabe Ihrer Informationen.");
}

167

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.11. Die Werte des aktuellen Teilformulars zurücksetzen
 168
Dieses Beispiel zeigt, wie Sie die Werte eines bestimmten Satzes von Feldern zurücksetzen, nicht
aber die Werte des gesamten Formulars. Dazu setzen Sie nur die Felder im erforderlichen Teilfor-
mularobjekt zurück.

In diesem Beispiel kann der Formularbenutzer die Feldwerte durch Klicken auf die Schaltfläche
"Löschen" zurücksetzen.

Zum Anzeigen dieser Beispieldatei und anderer rufen Sie das Developer Center.
15.11.1. Skripten für die Werte in der linken Spalte
Geben Sie dieses Skript für die Werte ein, die in der linken Spalte angezeigt werden:

this.rawValue = this.parent.index + 1;

Um die Standardwerte zurückzusetzen, fügen Sie ein click -Ereignis zur Schaltfläche „Löschen“
hinzu. Sie benötigen einen dynamischen Referenz-Syntax-Ausdruck, weil es sich hier um ein sich
wiederholendes Teilformular handelt, was im Referenz-Syntax-Ausdruck berücksichtigt werden
muss. In diesem Fall ist es einfacher, die resetData Parameter einzeln zu erstellen.

var f1 = this.parent.somExpression + ".TextField2" + ",";
var f2 = f1 + this.parent.somExpression + ".DropDownList1" + ",";
var f3 = f2 + this.parent.somExpression + ".NumericField1";

// ...und geben Sie die Variable als einen Parameter weiter.
xfa.host.resetData(f3);
15.12. Präsenz von Formularentwurfsobjekten ändern
Designer bietet auf verschiedenen Registerkarten der Palette „Objekt“ die folgenden Präsenzeinstel-
lungen für die Objekte in einem Formular. Die Einstellungen "Unsichtbar" und "Ausgeblendet
(Aus Layout ausschließen)" sind nicht für Gruppen, Inhaltsbereiche, Masterseiten, Seitensätze und
Objekte von Teilformularsätzen verfügbar.

HINWEIS: Um die Präsenzeinstellung eines Objekts mit Hilfe eines Skripts zu ändern, müssen Sie den
Wert der zwei zugrunde liegenden Eigenschaften des XML-Formularobjektmodells presence und
relevant ändern.

http://www.adobe.com/go/learn_lc_devnet

Beispiele für gängige Aufgaben bei der Skripterstellung
In der folgenden Tabelle finden Sie eine Übersicht über die Präsenzeinstellungen und die zugehörige
Referenz-Syntax.

Präsenzeinstellung Referenz-Syntax

Sichtbar FormCalc
ObjectName.presence = "visible"
JavaScript
ObjectName.presence = "visible";

Sichtbar (nur Bildschirm) FormCalc
ObjectName.presence = "visible"
ObjectName.relevant = "-print"
JavaScript
ObjectName.presence = "visible";
ObjectName.relevant = "-print";

Sichtbar (nur drucken) FormCalc
ObjectName.presence = "visible"
ObjectName.relevant = "+print"
JavaScript
ObjectName.presence = "visible";
ObjectName.relevant = "+print";

Unsichtbar FormCalc
ObjectName.presence = "invisible"
JavaScript
ObjectName.presence = "invisible";

Ausgeblendet (Aus Layout
ausschließen)

FormCalc
ObjectName.presence = "hidden"
JavaScript
ObjectName.presence = "hidden";

Nur einseitiger Druck FormCalc
ObjectName.presence = "simplex"
JavaScript
ObjectName.presence = "simplex";

Nur zweiseitiger Druck FormCalc
ObjectName.presence = "duplex"
JavaScript
ObjectName.presence = "duplex";
169

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.13. Teilformulare mit Hilfe der Eigenschaften des
Instanzmanagers steuern
 170
Dieses Beispiel zeigt, wie Sie mit den Eigenschaften des Instanzmanagers (der zum XML Form
Object Model gehört) zur Laufzeit Informationen über Teilformulare abrufen.

Im folgenden Formular nutzen die vier Schaltflächen die Skripteigenschaften des Instanzmanagers
und liefern Informationen über Subform1. Wenn ein Formularbenutzer beispielsweise auf die
Schaltfläche "Max" klickt, wird eine Meldung eingeblendet, welche die maximal zulässige Anzahl
unterstützter Subform1-Instanzen angibt.
15.13.1. Skripten zur Ausgabe des Wertes der Eigenschaft "count" im Meldungsfeld
Das folgende Skript verwendet die messageBox -Methode, um den Wert der count -Eigenschaft
auszugeben:

xfa.host.messageBox("Die aktuelle Anzahl von Subform1-Instanzen im Formular ist:"
+ properties.Subform1.instanceManager.count, "Instanz-Manager-Eigen-
schaften",3);

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die count
-Eigenschaft des Instanzmanagers zu referenzieren, wie hier dargestellt:

xfa.host.messageBox("Die aktuelle Anzahl von Subform1-Instanzen im Formular
ist:" + properties._Subform1.count, "Instanz-Manager-Eigenschaften", 3);

Die Unterstrich-Notation (_) ist besonders wichtig, wenn das Formular zurzeit keine Teilformu-
larinstanzen enthält.

Beispiele für gängige Aufgaben bei der Skripterstellung
15.13.2. Skripten zur Ausgabe des Wertes der Eigenschaft "max" im Meldungsfeld
Das folgende Skript verwendet die messageBox -Methode, um den Wert der max -Eigenschaft
auszugeben:

xfa.host.messageBox ("Die maximale Anzahl von Instanzen, die für Subform1
zulässig sind, lautet: "+ properties.Subform1.instanceManager.max,
"Instanz-Manager-Eigenschaften", 3);

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die max -Eigenschaft
des Instanzmanagers zu referenzieren, wie hier dargestellt:

xfa.host.messageBox ("Die maximale Anzahl von Instanzen, die für Subform1
zulässig sind, lautet: " + properties._Subform1.max, "Instanz-Manager-Eigen-
schaften", 3);
15.13.3. Skripten zur Ausgabe des Wertes der Eigenschaft "min" im Meldungsfeld
Das folgende Skript verwendet die messageBox -Methode, um den Wert der min -Eigenschaft
auszugeben:

xfa.host.messageBox ("Die Mindestanzahl der Instanzendie für Subform1 zulässig
sind, lautet: "+ properties.Subform1.instanceManager.min,
"Instanz-Manager-Eigenschaften", 3);

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die min -Eigenschaft
des Instanzmanagers zu referenzieren, wie hier dargestellt:

xfa.host.messageBox ("Die Mindestanzahl von Instanzen, die für Subform1 zulässig
sind, lautet: " + properties._Subform1.min, "Instanz-Manager-Eigenschaften", 3);
15.13.4. Skripten zur Ausgabe des Namens der Teilformulareigenschaft
im Meldungsfeld
Das folgende Skript verwendet die messageBox -Methode, um den Namen der subform
-Eigenschaft auszugeben:

xfa.host.messageBox ("Der Namen des Teilformulars, der die
Instanz-Manager-Namenseigenschaft verwendet, lautet: " + proper-
ties.Subform1.instanceManager.name + ".\n\nHinweis: Dieser Wert unterscheidet
sich von dem Wert, den die Namenseigenschaft des Objekts für Subform1 zurückge-
geben hat. "Instanz-Manager-Eigenschaften", 3);
171

Beispiele für gängige Aufgaben bei der Skripterstellung 15

 172
Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaft
"name" des Instanzmanagers zu referenzieren, wie in diesem Beispiel:

xfa.host.messageBox("Der Namen des Teilformulars, der die
Instanz-Manager-Namenseigenschaft verwendet, lautet: " + properties._Sub-
form1.name + ".\n\nHinweis: Dieser Wert unterscheidet sich von dem Wert, den die
Namenseigenschaft des Objekts für Subform1 zurückgegeben hat.
"Instanz-Manager-Eigenschaften", 3);
15.14. Teilformulare mit Hilfe der Methoden
des Instanzmanagers steuern
Dieses Beispiel demonstriert, wie Sie mit den Methoden des Instanzmanagers (der zum XML Form
Object Model gehört) zur Laufzeit Vorgänge für Teilformularobjekte durchführen. Beispielsweise
können Sie Instanzen eines bestimmten Teilformulars, einer Tabelle oder einer Tabellenzeile hinzu-
fügen oder entfernen.

Im folgenden Formular verwendet der Formularbenutzer die vier Schaltflächen, um die verschie-
denen Skriptmethoden des Instanzmanagers zu einzusetzen. Wenn der Formularbenutzer beispiels-
weise auf die Schaltfläche "Hinzufügen" klickt, wird dem Formular eine neue Subform2-Instanz
hinzugefügt.

HINWEIS: Die Schaltfläche "Verschieben" ordnet die ersten beiden Subform2-Instanzen neu an und die
Schaltfläche "Einrichten" zeigt die Höchstanzahl der Subform2-Instanzen an. In beiden Fällen müssen
Sie möglicherweise Teilformulare hinzufügen oder entfernen oder die Daten in den Textfeldern
ändern, um die auf die Subform2-Instanzen angewendeten Änderungen sehen zu können.

Beispiele für gängige Aufgaben bei der Skripterstellung
15.14.1. Skripten zum Feststellen, ob einem Formular die Höchstanzahl von
Teilformularen hinzugefügt wurde
Das folgende Skript ermittelt, ob die maximal unterstützte Anzahl von Subform2-Instanzen bereits
im Formular vorhanden ist. Falls ja, wird eine entsprechende Meldung eingeblendet. Falls nein,
wird dem Formular eine neue Subform2-Instanz hinzugefügt.

if (methods.Subform2.instanceManager.count ==
methods.Subform2.instanceManager.max) {
xfa.host.messageBox("You have reached the maximum number of items allowed.",
"Instance Manager Methods", 1);
}
else {
methods.Subform2.instanceManager.addInstance(1); xfa.form.recalculate(1);
}

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

if (Methoden._Subform2.count == methods._Subform1.max) {
xfa.host.messageBox("Sie haben die maximale Anzahl von zulässigen Elementen.",
"Instanz-Managers-Methode", 1);
}
else {
methods._Subform2.addInstance(1); xfa.form.recalculate(1);
}

15.14.2. Skripterstellung zum Feststellen, ob aus dem Formular weitere
Teilformulare entfernt werden können
Das folgende Skript ermittelt, ob das Formular Subform2-Instanzen enthält. Falls nein, wird eine
entsprechende Meldung eingeblendet. Falls ja, wird die erste Instanz aus dem Formular entfernt.

if (methods.Subform2.instanceManager.count == 0) {
xfa.host.messageBox("Es gibt keine Teilformularinstanzen zum Entfernen.",
"Instance Manager Methods", 1);
}
else {
methods.Subform2.instanceManager.removeInstance(0); xfa.form.recalculate(1);
}

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

if (Methoden._Subform2.count == 0) {
xfa.host.messageBox("Es gibt keine Teilforminstanzen zum Entfernen.",
"Instanz-Manager-Methoden", 1);
}
else {
methods._Subform2.removeInstance(0);
xfa.form.recalculate(1);
}

173

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.14.3. Skripten zum Festlegen, dass im Formular vier Teilformularinstanzen
erscheinen sollen
 174
Das folgende Skript bewirkt, dass im Formular vier Subform2-Instanzen erscheinen, unabhängig
davon, wie viele Instanzen zurzeit vorhanden sind:

methods.Subform2.instanceManager.setInstances(4);

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

Methoden._Subform2.setInstances(4);
15.14.4. Skripten zum Vertauschen des ersten und zweiten Teilformulars
im Formular
Das folgende Skript weist die erste und zweite Subform2-Instanz an, auf dem Formular die Position
zu tauschen.

methods.Subform2.instanceManager.moveInstance(0,1);

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanzmanagers zu referenzieren, wie in diesem Beispiel:

Methoden._Subform2.moveInstance(0,1);
15.15. Teilformulare mit Hilfe des Instanzmanagers zur Laufzeit
steuern
Dieses Beispiel zeigt, wie Sie mit den Eigenschaften und Methoden des Instanzmanagers zur Laufzeit
Informationen über Teilformulare abrufen und Vorgänge für Teilformularobjekte durchführen.

In diesem Beispiel verwendet der Formularbenutzer die Schaltflächen, um mit Hilfe von
Subform3-Instanzen verschiedene Aktionen auszuführen. Wenn ein Formularbenutzer beispiels-
weise auf die Schaltfläche "Instanz unten einfügen" klickt, wird unterhalb der aktuellen Instanz eine
neue Subform3-Instanz eingefügt.

HINWEIS: Möglicherweise ist es erforderlich, Teilformulare hinzuzufügen oder zu entfernen oder die Daten
im Textfeld ändern, um die auf die Subform3-Instanzen angewendeten Änderungen sehen zu können.

Beispiele für gängige Aufgaben bei der Skripterstellung
HINWEIS: Wenn keine Instanzen eines bestimmten Teilformulars in Ihrem Formular existieren,
müssen Sie die Unterstrich-Notation (_) verwenden (siehe nachfolgende Beispiele). Weitere Informa-
tionen zur Verwendung der Unterstrich-Notation (_) finden Sie in der Designer-Hilfe.
15.15.1. Skripten für die Schaltfläche „Neues Teilformular hinzufügen“
Das folgende Skript ermittelt, ob die maximal unterstützte Anzahl von Subform3-Instanzen bereits
im Formular vorhanden ist. Falls ja, wird eine entsprechende Meldung eingeblendet. Falls nein,
wird dem Formular eine neue Subform3-Instanz hinzugefügt.

if (advanced.Subform3.instanceManager.count ==
advanced.Subform3.instanceManager.max) {
xfa.host.messageBox("Sie haben die maximale Anzahl der zulässigen Elemente
erreicht.","Combining Instance Manager Concepts", 1);
}
else {
advanced.Subform3.instanceManager.addInstance(1); xfa.form.recalculate(1);
}

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

if (erweitert._Subform3.count == advanced._Subform3.max) {
xfa.host.messageBox("Sie haben die maximale Anzahl von zulässigen Elementen
erreicht.", "Kombination von Instanz-Manager-Konzepten", 1);
}
else {
advanced._Subform3.addInstance(1); xfa.form.recalculate(1);
}

175

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.15.2. Skripten für die Schaltfläche „Teilformular entfernen“
 176
Das folgende Skript ermittelt, ob das Formular Subform3-Instanzen enthält. Falls nein, wird eine
entsprechende Meldung eingeblendet. Falls ja, wird die erste Instanz aus dem Formular enthält.

if (advanced.Subform3.instanceManager.count == 0) {
xfa.host.messageBox("Es gibt keine Teilforminstanzen zum Entfernen.", "Kombina-
tion von Instanz-Manager-KOnzepten", 1);
}
else {
advanced.Subform3.instanceManager.removeInstance(0);
}

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

if (erweitert._Subform3.count == 0) {
xfa.host.messageBox("Es gibt keine Teilforminstanzen zum Entfernen.", "Kombina-
tion von Instanz-Manager-Konzepten", 1);
}
else {
advanced._Subform3.removeInstance(0);
}

15.15.3. Skripten für die Schaltfläche „Instanz unten einfügen“
Die folgende if-else-Anweisung verhindert die Fortsetzung des Skriptes, falls das Formular zurzeit
die maximal zulässige Anzahl von Subform3-Instanzen enthält:

if (Subform3.instanceManager.count < Subform3.instanceManager.occur.max) {
//oNewInstance speichert eine Instanz von Subform3, die von der addIns-
tance()-Methode erstellt wurde.
var oNewInstance = Subform3.instanceManager.addInstance(1);
//nIndexFrom und nIndexTo speichern die Vor- und Nach-Index-Werte, um sie mit der
moveInstance()-Methode zu verwenden.
var nIndexFrom = oNewInstance.index; var nIndexTo = Subform3.index + 1;

In diesem Fall, wenn das Skript den Wert nIndexFromreferenziert, wird die neue Instanz von
Subform3 zum Formular an der Position hinzugefügt, die in der moveInstance -Methode
angegeben ist:

Subform3.instanceManager.moveInstance(nIndexFrom, nIndexTo);
}
else {
xfa.host.messageBox("Sie haben die maximale Anzahl von zulässigen Elementen
erreicht.", "Kombination von Instanz-Manager-Konzepten", 1);
}

Beispiele für gängige Aufgaben bei der Skripterstellung
Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

if (_Subform3.count < _Subform3.occur.max) {
var oNewInstance = _Subform3.addInstance(1);
var nIndexFrom = oNewInstance.index;
var nIndexTo = Subform3.index + 1;
_Subform3.moveInstance(nIndexFrom, nIndexTo);
}
else {
xfa.host.messageBox("Sie haben die maximale Anzahl von zulässigen Elementen
erreicht.", "Kombination von Instanz-Manager-Konzepten", 1);
}

15.15.4. Skripten für die Schaltfläche „Diese Instanz löschen“
Die folgende if-else-Anweisung verhindert die Fortsetzung des Skriptes, falls das Formular zurzeit
die mindestens erforderliche Anzahl von Subform3-Instanzen enthält:

if (Subform3.instanceManager.count > Subform3.instanceMa-
nager.occur.min) {

Dieses Skript verwendet eine removeInstance -Methode zum Entfernen einer Instanz von
Subform3.

HINWEIS: Dieses Skript verwendet den Wert parent.parent.index um die Subform3-Instanz
zu entfernen Die parent -Referenz bezeichnet den Container des Objekts, das die Referenz
verwendet. In diesem Fall würde die Verwendung der Referenz parent.index das unbenannte
Teilformular bezeichnen, das die Schaltflächen „Instanz unten einfügen“, „Diese Instanz löschen“,
„Eine Zeile nach oben“ und „Eine Zeile nach unten“ enthält.

Subform3.instanceManager.removeInstance(parent.parent.index);
}
else {
xfa.host.messageBox("Sie haben die maximale Anzahl von zulässigen Elementen
erreicht.", "Kombination von Instanz-Manager-Konzepten", 1);
}

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

if (_Subform3.count > _Subform3.occur.min) {
Subform3.removeInstance(Subform3.index);
}
else {
xfa.host.messageBox("Sie haben die maximale Anzahl von zulässigen Elementen
erreicht.", "Kombination von Instanz-Manager-Konzepten", 1);
}

177

Beispiele für gängige Aufgaben bei der Skripterstellung 15
15.15.5. Skripten für die Schaltfläche „Eine Zeile nach oben“
 178
Die folgende if-else-Anweisung verhindert die Fortsetzung des Skriptes, falls die Instanz von
Subform3 als erste Instanz in der Liste aufgeführt wird:

if (Subform3.index != 0) {
//nIndexFrom and nIndexTo speichern die Vor- und Nach-Index-Werte, um sie mit der
moveInstance-Methode zu verwenden. var nIndexFrom = Subform3.index; var nIndexTo
= Subform3.index - 1; Subform3.instanceManager.moveInstance(nIndexFrom,
nIndexTo);
}
else {
xfa.host.messageBox("Das aktuelle Element kann nicht verschoben werden, weil es
die erste Instanz in der Liste ist.", "Kombination von
Instanz-Manager-Konzepten", 1);
}

Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

if (Subform3.index != 0) {
var nIndexFrom = Subform3.index;
var nIndexTo = Subform3.index - 1;
Subform3.moveInstance(nIndexFrom, nIndexTo);
}
else {
xfa.host.messageBox("Das aktuelle Element kann nicht verschoben werden, weil
es die erste Instanz in der Liste ist.", "Kombination von
Instanz-Manager-Konzepten", 1);

}

15.15.6. Skripten für die Schaltfläche „Eine Zeile nach unten“
Diese Variable speichert den Indexwert der Subform3-Instanz:

var nIndex = Subform3.index;

Die folgende if-else-Anweisung verhindert die Fortsetzung des Skriptes, falls die Instanz von
Subform3 als letzte Instanz in der Liste aufgeführt wird:

if ((nIndex + 1) < Subform3.instanceManager.count) {
// nIndexFrom and nIndexTo speichern die Vor- und Nach-Index-Werte, um sie mit
der moveInstance()-Methode zu verwenden. var nIndexFrom = nIndex; var nIndexTo =
nIndex + 1; Subform3.instanceManager.moveInstance(nIndexFrom, nIndexTo);
}
else {
xfa.host.messageBox("Das aktuelle Element kann nicht verschoben werden, weil es
die erste Instanz in der Liste ist.", "Kombination von
Instanz-Manager-Konzepten", 1);
}

Beispiele für gängige Aufgaben bei der Skripterstellung
Sie können dieses Skript auch mit der Unterstrich-Notation (_) schreiben, um die Eigenschaften
und Methoden des Instanz-Managers zu referenzieren, wie in diesem Beispiel:

var nIndex = Subform3.index;
if ((nIndex + 1) < Subform3.instanceManager.count) {
var nIndexFrom = nIndex;
var nIndexTo = nIndex + 1;
_Subform3.moveInstance(nIndexFrom, nIndexTo);
}
else {
xfa.host.messageBox("Das aktuelle Element kann nicht verschoben werden, weil es
die erste Instanz in der Liste ist.", "Kombination von
Instanz-Manager-Konzepten", 1);
}

179

	Skriptgrundlagen für Designer
	AEM 6.2 Forms

	Rechtliche Hinweise
	Inhaltsverzeichnis

	1. Informationen zu diesem Dokument
	1.1. Zielsetzung dieser Einleitung
	1.2. Zusätzliche Informationen
	1.2.1. Designer-Hilfe
	1.2.2. Grundlagen zum Erstellen von Skripten
	1.2.3. Skriptreferenz
	1.2.4. Benutzerforen
	1.2.5. Beispielskripten

	2. Skripterstellung mit Designer
	2.1. Funktionsweise von Skripten
	Verknpfte Links:

	2.2. Objekte, die Berechnungen und Skripte unterstützen
	Verknpfte Links:

	2.3. Beziehungen zwischen Objekten in der Objektbibliothek
	Verknpfte Links:

	2.4. Skript-Editor
	Anzeigen
	Ereignisse für untergeordnete Objekte anzeigen
	Funktionen
	Skriptsyntax prüfen
	Sprache
	Ausführen am
	Ereignisübertragung

	3. Konfigurieren von Designer für die Skripterstellung
	3.1. So zeigen Sie den Skript-Editor an
	1) Wählen Sie „Fenster“ > „Skript-Editor“.

	3.2. So wechseln Sie von der einzeiligen zur mehrzeiligen Ansicht
	1) Ziehen Sie die Palettenleiste des Skript-Editors, bis die Palette die erforderliche Größe hat.

	3.3. So legen Sie die Standard-Skriptsprache für neue Formulare fest
	1) Wählen Sie „Extras“ > „Optionen“.
	2) Klicken Sie auf „Arbeitsbereich“.
	3) Wählen Sie in der Liste „Standardsprache für neue Formulare“ die Standard-Skriptsprache für neue Formulare aus.

	3.4. So legen Sie die Standard-Skriptsprache für das aktuelle Formular fest
	1) Wählen Sie Datei > Formulareigenschaften.
	2) Klicken Sie auf die Registerkarte „Standard“.
	3) Wählen Sie in der Liste „Standardsprache“ die Standard-Skriptsprache für das aktuell angezeigte Formular aus.

	3.5. So legen Sie die Standard-Skriptsprache für das aktuelle Formular fest
	1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.
	2) Klicken Sie auf die Registerkarte „Standard“.
	3) Wählen Sie in der Liste „Standardsprache“ die Standard-Skriptsprache für das aktuell angezeigte Formular aus.

	3.6. So legen Sie die Standard-Skriptsprache für eine Formularvorlage fest
	1) Erstellen Sie einen neuen Formularentwurf.
	2) Wählen Sie Datei > Formulareigenschaften.
	3) Klicken Sie auf die Registerkarte „Standard“.
	4) Wählen Sie in der Liste „Standardsprache“ die standardmäßige Sprache für die Skripterstellung aus.
	5) Erstellen Sie eine Sicherungskopie der ursprünglichen Vorlagendatei im Ordner „Templates“, der sich im Installationsverzeichnis von Designer befindet.
	6) Speichern Sie den neuen Formularentwurf als TDS-Datei und überschreiben Sie die dazugehörige Formularvorlage. Beispiel: Speichern Sie die Datei unter dem Namen „Letter.tds“ und überschreiben Sie die Datei „Letter.tds“ im Ordner „Templ...

	3.7. So legen Sie die Standard-Skriptsprache für eine Formularvorlage fest
	1) Erstellen Sie einen neuen Formularentwurf.
	2) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.
	3) Klicken Sie auf die Registerkarte „Standard“.
	4) Wählen Sie in der Liste „Standardsprache“ die standardmäßige Sprache für die Skripterstellung aus.
	5) Erstellen Sie eine Sicherungskopie der ursprünglichen Vorlagendatei im Ordner „Templates“, der sich im Installationsverzeichnis von Designer befindet.
	6) Speichern Sie den neuen Formularentwurf als TDS-Datei und überschreiben Sie die dazugehörige Formularvorlage. Beispiel: Speichern Sie die Datei unter dem Namen „Letter.tds“ und überschreiben Sie die Datei „Letter.tds“ im Ordner „Templ...

	3.8. So legen Sie die Standard-Anwendung für die Verarbeitung fest
	1) Wählen Sie Datei > Formulareigenschaften.
	2) Klicken Sie auf die Registerkarte „Standard“.
	3) Wählen Sie aus der Liste „Standardausführung am“ die gewünschte Standardanwendung für die Verarbeitung.

	3.9. So legen Sie die Standard-Anwendung für die Verarbeitung fest
	1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.
	2) Klicken Sie auf die Registerkarte „Standard“.
	3) Wählen Sie aus der Liste „Standardausführung am“ die gewünschte Standardanwendung für die Verarbeitung.

	3.10. So ändern Sie die Standardanwendung für die Verarbeitung für eine Formularvorlage
	1) Erstellen Sie einen neuen Formularentwurf.
	2) Wählen Sie Datei > Formulareigenschaften.
	3) Klicken Sie auf die Registerkarte „Standard“.
	4) Wählen Sie aus der Liste „Standardausführung am“ die gewünschte Standardanwendung für die Verarbeitung.
	5) Erstellen Sie eine Sicherungskopie der ursprünglichen Vorlagendatei im Ordner „Templates“, der sich im Installationsverzeichnis von Designer befindet.
	6) Speichern Sie den neuen Formularentwurf als TDS-Datei und überschreiben Sie die dazugehörige Formularvorlage. Beispiel: Speichern Sie die Datei unter dem Namen „Letter.tds“ und überschreiben Sie die Datei „Letter.tds“ im Ordner „Templ...

	3.11. So ändern Sie die Standardanwendung für die Verarbeitung für eine Formularvorlage
	1) Erstellen Sie einen neuen Formularentwurf.
	2) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.
	3) Klicken Sie auf die Registerkarte „Standard“.
	4) Wählen Sie aus der Liste „Standardausführung am“ die gewünschte Standardanwendung für die Verarbeitung.
	5) Erstellen Sie eine Sicherungskopie der ursprünglichen Vorlagendatei im Ordner „Templates“, der sich im Installationsverzeichnis von Designer befindet.
	6) Speichern Sie den neuen Formularentwurf als TDS-Datei und überschreiben Sie die dazugehörige Formularvorlage. Beispiel: Speichern Sie die Datei unter dem Namen „Letter.tds“ und überschreiben Sie die Datei „Letter.tds“ im Ordner „Templ...

	3.12. So zeigen Sie arabische, hebräische, thailändische und vietnamesische Zeichen an
	1) Wählen Sie „Extras“ > „Optionen“ und dann links im Fenster den Eintrag „Arbeitsbereich“.
	2) Wählen Sie eine der folgenden Optionen aus:
	3) Wählen Sie unter „Schrift“ eine Schrift aus, die Ihre Sprache unterstützt. Adobe Arabic unterstützt beispielsweise Arabisch, Adobe Hebrew unterstützt Hebräisch, Adobe Thai unterstützt Thai und Myriad® Pro und Minion® Pro unterstützt V...
	4) Klicken Sie auf OK.
	5) Klicken Sie auf „OK“, um das Dialogfeld „Optionen“ zu schließen.

	3.13. Berechnungen und Skripten mit dem Arbeitsbereich debuggen

	4. Berechnungen und Skripten erstellen
	4.1. Namenskonventionen für Formularentwurfsobjekte und Variablen
	Verknpfte Links:

	4.2. Skriptsprache wählen
	Verknpfte Links:

	4.3. So erstellen Sie eine Berechnung oder ein Skript
	1) Wählen Sie im Formularentwurf ein Objekt aus, das Ereignisse unterstützt. Fügen Sie einem neuen, leeren Formular eine Schaltfläche hinzu.
	2) Wählen Sie im Skript-Editor aus der Liste „Anzeigen“ eines der Ereignisse aus, die für das betreffende Objekt gültig sind. Das gewählte Ereignis bestimmt, wann das Skript ausgeführt wird. Wenn Sie eine Berechnung oder ein Skript erstellen...
	3) Wählen Sie in der Liste „Sprache“ eine Skriptsprache aus. Wählen Sie für das neue Schaltflächenobjekt „JavaScript“ aus.
	4) Wählen Sie in der Liste "Ausführen am", wo das Skript ausgeführt werden soll. Wählen Sie für das neue Schaltflächenobjekt beispielsweise "Client".
	5) Geben Sie in das Feld "Skriptquelle" eine FormCalc-Berechnung bzw. ein JavaScript-Skript ein. Mit Hilfe der Anweisungsende-Funktionalität von Designer können Sie Referenz-Syntaxen für eine Berechnung oder ein Skript erstellen. Fügen Sie beispi...
	6) Nach Fertigstellung des Formularentwurfs sollten Sie Ihre Berechnungen und Skripten vor dem eigentlichen Einsatz prüfen. Beispielsweise können Sie sich das neue Schaltflächenobjekt in der PDF-Version des Formulars auf der Registerkarte "PDF-Vor...

	4.4. So erstellen Sie eine Berechnung oder ein Skript
	1) Wählen Sie im Formularentwurf ein Objekt aus, das Ereignisse unterstützt. Fügen Sie einem neuen, leeren Formular eine Schaltfläche hinzu.
	2) Wählen Sie im Skript-Editor aus der Liste „Anzeigen“ eines der Ereignisse aus, die für das betreffende Objekt gültig sind. Das gewählte Ereignis bestimmt, wann das Skript ausgeführt wird. Wenn Sie eine Berechnung oder ein Skript erstellen...
	3) Wählen Sie in der Liste „Sprache“ eine Skriptsprache aus. Wählen Sie für das neue Schaltflächenobjekt „JavaScript“ aus.
	4) Wählen Sie in der Liste "Ausführen am", wo das Skript ausgeführt werden soll. Wählen Sie für das neue Schaltflächenobjekt beispielsweise "Client".
	5) Geben Sie in das Feld "Skriptquelle" eine FormCalc-Berechnung bzw. ein JavaScript-Skript ein. Mit Hilfe der Anweisungsende-Funktionalität von Designer können Sie Referenz-Syntaxen für eine Berechnung oder ein Skript erstellen. Fügen Sie beispi...
	6) Nach Fertigstellung des Formularentwurfs sollten Sie Ihre Berechnungen und Skripten vor dem eigentlichen Einsatz prüfen. Beispielsweise können Sie sich das neue Schaltflächenobjekt in der PDF-Version des Formulars auf der Registerkarte "PDF-Vor...
	Verknpfte Links:

	4.5. So suchen Sie nach Text oder anderen Objekten
	1) Wählen Sie auf der Registerkarte „XML-Quelle“ oder im Skript-Editor den Befehl „Bearbeiten“ > „Suchen“ oder klicken Sie mit der rechten Maustaste, um das Kontextmenü aufzurufen.
	2) Geben Sie im Feld „Suchen nach“ den zu suchenden Text ein.
	3) Wählen Sie nach Wunsch andere Optionen aus.
	4) Klicken Sie auf „Weitersuchen“.
	Verknpfte Links:

	4.6. So ersetzen Sie Text oder andere Objekte
	1) Wählen Sie im Skript-Editor „Bearbeiten“ > „Ersetzen“.
	2) Geben Sie im Feld „Suchen nach“ den zu suchenden Text ein.
	3) Geben Sie im Feld „Ersetzen durch“ den Ersatztext ein.
	4) Wählen Sie nach Wunsch andere Optionen aus.
	5) Klicken Sie auf „Weitersuchen“, „Ersetzen“ oder „Alle ersetzen“.
	6) Zum Abbrechen eines laufenden Suchvorgangs drücken Sie die Esc-Taste oder klicken auf die Schaltfläche "Abbrechen".
	Verknpfte Links:

	4.7. So erstellen Sie Berechnungen und Skripten mit dem Anweisungsende
	1) Geben Sie den Namen eines Formularentwurfsobjekts oder einer Eigenschaft bzw. einen gültigen FormCalc-Kurzbefehl ein und gleich darauf einen Punkt.
	2) Wählen Sie die Methode oder Eigenschaft aus, die Sie für das Formularentwurfsobjekt anwenden möchten, und fahren Sie dann mit dem Erstellen des Skripts fort. Um die Anweisungsende-Liste zu schließen, ohne eine Funktion auszuwählen, drücken S...
	Verknpfte Links:

	4.8. So fügen Sie eine Objektreferenz-Syntax automatisch ein
	1) Stellen Sie sicher, dass das Feld „Skriptquelle“ im Skript-Editor aktiv ist und dass der Cursor dort positioniert ist, wo Sie die Objektreferenz einfügen wollen.
	2) Klicken Sie im Formular bei gedrückter Strg-Taste auf das zu referenzierende Objekt. Der Cursor nimmt die Form an, um Ihnen die Objektauswahl zu erleichtern.
	Verknpfte Links:

	4.9. Festlegen, wann eine Berechnung oder ein Skript ausgeführt werden soll
	docReady
	enter
	exit
	change
	click
	Verknpfte Links:

	4.10. So zeigen Sie Skriptereignisse und Skripten an
	4.10.1. So zeigen Sie im Skript-Editor ein Skriptereignis für ein einzelnes Objekt an
	1) Wählen Sie im Formular ein Objekt aus.
	2) Wählen Sie in der Liste „Anzeigen“ ein gültiges Skriptereignis aus.

	4.10.2. So zeigen Sie im Skript-Editor ein Skriptereignis für ein Container-Objekt und dessen untergeordnete Objekte an
	1) Ändern Sie bei Bedarf die Größe des Skript-Editors, damit mehrere Skriptzeilen angezeigt werden können, und vergewissern Sie sich, dass die Option „Ereignisse für untergeordnete Objekte anzeigen“ ausgewählt ist.
	2) Wählen Sie ein Container-Objekt, wie z. B. ein Teilformular, aus.
	3) Wählen Sie in der Liste „Anzeigen“ ein gültiges Skriptereignis aus.

	4.10.3. So zeigen Sie im Skript-Editor alle Skriptereignisse für ein einzelnes Objekt an
	1) Wählen Sie im Formular ein Objekt aus.
	2) Wählen Sie in der Liste „Anzeigen“ die Option „Alle Ereignisse“ aus.

	4.10.4. So zeigen Sie im Skript-Editor alle Skriptereignisse für ein Container-Objekt und dessen untergeordnete Objekte an
	1) Ändern Sie bei Bedarf die Größe des Skript-Editors, damit mehrere Skriptzeilen angezeigt werden können, und vergewissern Sie sich, dass die Option „Ereignisse für untergeordnete Objekte anzeigen“ ausgewählt ist.
	2) Wählen Sie ein Container-Objekt, wie z. B. ein Teilformular, aus.
	3) Wählen Sie in der Liste „Anzeigen“ die Option „Alle Ereignisse“ aus.

	4.10.5. So zeigen Sie im Skript-Editor alle Skripten für ein einzelnes Objekt an
	1) Wählen Sie ein Objekt, an das Skripten angehängt sind.
	2) Wählen Sie in der Liste "Anzeigen" die Option "Ereignisse mit Skripten" aus.

	4.10.6. So zeigen Sie im Skript-Editor alle Skripten für ein Container-Objekt und dessen untergeordnete Objekte an
	1) Ändern Sie bei Bedarf die Größe des Skript-Editors, damit mehrere Skriptzeilen angezeigt werden können, und vergewissern Sie sich, dass die Option „Ereignisse für untergeordnete Objekte anzeigen“ ausgewählt ist.
	2) Wählen Sie ein Container-Objekt, wie z. B. ein Teilformular, aus. Alle Ereignisse für das Container-Objekt und dessen untergeordnete Objekte werden im Skript-Editor angezeigt.
	3) Wählen Sie in der Liste „Anzeigen“ die Option „Alle Ereignisse“ aus.

	4.11. Festlegen, wo eine Berechnung oder ein Skript ausgeführt werden soll
	Verknpfte Links:

	4.12. Berechnungen und Skripten testen und debuggen
	Verknpfte Links:

	4.13. So prüfen Sie die Skriptsyntax
	1) Wählen Sie im Skript-Editor „Extras“ > „Skriptsyntax prüfen“.
	Verknpfte Links:

	4.14. Sicherheitseinschränkungen umgehen

	5. Ereignisse
	5.1. Ereignistypen
	Prozessereignisse
	Interaktive Ereignisse
	Anwendungsereignisse
	Verknpfte Links:

	5.2. Prozessereignisse
	Verknpfte Links:

	5.3. Interaktive Ereignisse
	Verknpfte Links:

	5.4. Anwendungsereignisse
	Verknpfte Links:

	5.5. calculate-Ereignis
	5.5.1. Beschreibung
	5.5.2. Tippen Sie
	5.5.3. Unterstützung
	5.5.4. Version
	5.5.5. Beispiel
	Verknpfte Links:

	5.6. change-Ereignis
	5.6.1. Beschreibung
	5.6.2. Tippen Sie
	5.6.3. Unterstützung
	5.6.4. Version
	5.6.5. Beispiel
	Verknpfte Links:

	5.7. click-Ereignis
	5.7.1. Beschreibung
	5.7.2. Tippen Sie
	5.7.3. Unterstützung
	5.7.4. Version
	5.7.5. Beispiel
	Verknpfte Links:

	5.8. docClose-Ereignis
	5.8.1. Beschreibung
	5.8.2. Tippen Sie
	5.8.3. Unterstützung
	5.8.4. Version
	5.8.5. Beispiel
	Verknpfte Links:

	5.9. docReady-Ereignis
	5.9.1. Beschreibung
	5.9.2. Tippen Sie
	5.9.3. Unterstützung
	5.9.4. Version
	5.9.5. Beispiel
	Verknpfte Links:

	5.10. enter-Ereignis
	5.10.1. Beschreibung
	5.10.2. Tippen Sie
	5.10.3. Unterstützung
	5.10.4. Version
	5.10.5. Beispiel
	Verknpfte Links:

	5.11. exit-Ereignis
	5.11.1. Beschreibung
	5.11.2. Tippen Sie
	5.11.3. Unterstützung
	5.11.4. Version
	5.11.5. Beispiel
	Verknpfte Links:

	5.12. form:ready-Ereignis
	5.12.1. Beschreibung
	5.12.2. Tippen Sie
	5.12.3. Unterstützung
	5.12.4. Version
	5.12.5. Beispiel
	Verknpfte Links:

	5.13. full-Ereignis
	5.13.1. Beschreibung
	5.13.2. Tippen Sie
	5.13.3. Unterstützung
	5.13.4. Version
	5.13.5. Beispiel
	Verknpfte Links:

	5.14. indexChange-Ereignis
	5.14.1. Beschreibung
	5.14.2. Tippen Sie
	5.14.3. Unterstützung
	5.14.4. Version
	5.14.5. Beispiel
	Verknpfte Links:

	5.15. initialize-Ereignis
	5.15.1. Beschreibung
	5.15.2. Tippen Sie
	5.15.3. Unterstützung
	5.15.4. Version
	5.15.5. Beispiel
	Verknpfte Links:

	5.16. layout:ready-Ereignis
	5.16.1. Beschreibung
	5.16.2. Tippen Sie
	5.16.3. Unterstützung
	5.16.4. Version
	5.16.5. Beispiel
	Verknpfte Links:

	5.17. mouseDown-Ereignis
	5.17.1. Beschreibung
	5.17.2. Tippen Sie
	5.17.3. Unterstützung
	5.17.4. Version
	5.17.5. Beispiel
	Verknpfte Links:

	5.18. mouseEnter-Ereignis
	5.18.1. Beschreibung
	5.18.2. Tippen Sie
	5.18.3. Unterstützung
	5.18.4. Version
	5.18.5. Beispiel
	Verknpfte Links:

	5.19. mouseExit-Ereignis
	5.19.1. Beschreibung
	5.19.2. Tippen Sie
	5.19.3. Unterstützung
	5.19.4. Version
	5.19.5. Beispiel
	Verknpfte Links:

	5.20. mouseUp-Ereignis
	5.20.1. Beschreibung
	5.20.2. Tippen Sie
	5.20.3. Unterstützung
	5.20.4. Version
	5.20.5. Beispiel
	Verknpfte Links:

	5.21. postOpen-Ereignis
	5.21.1. Beschreibung
	5.21.2. Tippen Sie
	5.21.3. Unterstützung
	5.21.4. Version
	5.21.5. Beispiel
	Verknpfte Links:

	5.22. postPrint-Ereignis
	5.22.1. Beschreibung
	5.22.2. Tippen Sie
	5.22.3. Unterstützung
	5.22.4. Version
	5.22.5. Beispiel
	Verknpfte Links:

	5.23. postSave-Ereignis
	5.23.1. Beschreibung
	5.23.2. Tippen Sie
	5.23.3. Unterstützung
	5.23.4. Version
	5.23.5. Beispiel
	Verknpfte Links:

	5.24. postSign-Ereignis
	5.24.1. Beschreibung
	5.24.2. Tippen Sie
	5.24.3. Unterstützung
	5.24.4. Version
	5.24.5. Beispiel
	Verknpfte Links:

	5.25. postSubmit-Ereignis
	5.25.1. Beschreibung
	5.25.2. Tippen Sie
	5.25.3. Unterstützung
	5.25.4. Version
	5.25.5. Beispiel
	Verknpfte Links:

	5.26. preOpen-Ereignis
	5.26.1. Beschreibung
	5.26.2. Tippen Sie
	5.26.3. Unterstützung
	5.26.4. Version
	5.26.5. Beispiel
	Verknpfte Links:

	5.27. prePrint-Ereignis
	5.27.1. Beschreibung
	5.27.2. Tippen Sie
	5.27.3. Unterstützung
	5.27.4. Version
	5.27.5. Beispiel
	Verknpfte Links:

	5.28. preSave-Ereignis
	5.28.1. Beschreibung
	5.28.2. Tippen Sie
	5.28.3. Unterstützung
	5.28.4. Version
	5.28.5. Beispiel
	Verknpfte Links:

	5.29. preSign-Ereignis
	5.29.1. Beschreibung
	5.29.2. Tippen Sie
	5.29.3. Unterstützung
	5.29.4. Version
	5.29.5. Beispiel
	Verknpfte Links:

	5.30. preSubmit-Ereignis
	5.30.1. Beschreibung
	5.30.2. Tippen Sie
	5.30.3. Unterstützung
	5.30.4. Version
	5.30.5. Beispiel
	Verknpfte Links:

	5.31. validate-Ereignis
	5.31.1. Beschreibung
	5.31.2. Tippen Sie
	5.31.3. Unterstützung
	5.31.4. Version
	5.31.5. Beispiel
	Verknpfte Links:

	6. Skripterstellung mit FormCalc und JavaScript
	Verknpfte Links:
	6.1. FormCalc verwenden
	Verknpfte Links:

	6.2. Integrierte Funktionen verwenden
	6.2.1. So fügen Sie einem Objekt eine FormCalc-Funktion hinzu
	1) Achten Sie darauf, dass im Designer-Arbeitsbereich die mehrzeilige Version des Skript-Editors angezeigt wird.
	2) Wählen Sie ein Feld in Ihrem Formular aus.
	3) Wählen Sie in der Liste „Anzeigen“ das Ereignis „calculate“.
	4) Klicken Sie auf das Symbol „Funktionen“ oder drücken Sie die Taste F10 zum Einblenden einer Liste der FormCalc-Funktionen.
	5) Wählen Sie die entsprechende Funktion und drücken Sie die Eingabetaste.
	6) Ersetzen Sie die Standardnotation der Funktionssyntax durch Ihre eigenen Werte.
	7) Zum Testen des Formulars klicken Sie auf die Registerkarte „PDF-Vorschau“.

	6.2.2. Integrierte Funktionssyntax
	Verknpfte Links:

	6.3. Basisberechnungen erstellen
	6.3.1. Grundlagen zu Basisberechnungen
	6.3.2. Beispiele für Basisberechnungen
	Verknpfte Links:

	6.4. JavaScript verwenden
	Verknpfte Links:

	6.5. Skripten mit JavaScript erstellen
	Verknpfte Links:

	6.6. Strikte Scoping-Regeln in JavaScript erzwingen
	6.6.1. Funktionsweise von Scopes in JavaScript
	6.6.2. XML-Scope
	6.6.3. SOM-Ausdrücke und Scopes
	6.6.4. Scoping und Skriptobjekte
	6.6.5. Scoping und Zielversion
	6.6.6. Verwendungsbereich des Scopings
	6.6.7. So aktivieren Sie das strikte Scoping
	1) Wählen Sie „Datei“ > „Formulareigenschaften“ aus und klicken Sie auf die Registerkarte „Runtime“.
	2) Wählen Sie „Strikte Scoping-Regeln in JavaScript erzwingen“, wenn die Option zur Verfügung steht, und klicken Sie dann auf „OK“.
	Verknpfte Links:

	6.7. So fügen Sie einem Objekt ein JavaScript-Skript hinzu
	1) Achten Sie darauf, dass im Designer-Arbeitsbereich die mehrzeilige Version des Skript-Editors angezeigt wird.
	2) Wählen Sie ein Feld in Ihrem Formular aus. Fügen Sie dem Formularentwurf beispielsweise ein neues Textfeld hinzu.
	3) Wählen Sie in der Liste „Anzeigen“ ein gültiges Ereignis aus. Beispiel: Wählen Sie für das neue Textfeld das docReady -Ereignis auswählen.
	4) Wählen Sie in der Liste "Ausführen am", wo das Skript ausgeführt werden soll. Beispiel: Wählen Sie für das neue Textfeld „Client“ aus.
	5) Klicken Sie auf das Symbol „Funktionen“ oder drücken Sie die Taste F10 zum Einblenden einer Liste der JavaScript-Funktionen.
	6) Wählen Sie die gewünschte Funktion und drücken Sie die Eingabetaste.
	7) Ersetzen Sie die Standardnotation der Funktionssyntax durch Ihre eigenen Werte. Alternativ können Sie im Skript-Editor im Feld „Skriptquelle“ ein Skript manuell eingeben. Fügen Sie in dem neuen Textfeld beispielsweise das folgende JavaScript...
	8) Zum Testen des Formulars klicken Sie auf die Registerkarte „PDF-Vorschau“. Bei Anzeige des Formulars auf der Registerkarte „PDF-Vorschau“ sollte das Textfeld für das neue Schaltflächenobjekt rot dargestellt sein.
	Verknpfte Links:

	7. Variablen
	7.1. Variablen benennen
	7.2. So definieren Sie Textvariablen
	1) Wählen Sie „Datei“ > „Formulareigenschaften“.
	2) Klicken Sie auf der Registerkarte „Variablen“ auf „Neu (Einfügen)“ .
	3) Geben Sie in der Liste „Variablen“ einen eindeutigen Namen für die Variable ein und drücken Sie die Eingabetaste. Bei Variablennamen ist die korrekte Groß-/Kleinschreibung wichtig; sie sollten außerdem keine Leerzeichen enthalten.
	4) Klicken Sie einmal in das Feld auf der rechten Seite und geben Sie den Text ein, den Sie der Variablen zuweisen möchten.

	7.3. So definieren Sie Textvariablen
	1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.
	2) Klicken Sie auf der Registerkarte „Variablen“ auf „Neu (Einfügen)“ .
	3) Geben Sie in der Liste „Variablen“ einen eindeutigen Namen für die Variable ein und drücken Sie die Eingabetaste. Bei Variablennamen ist die korrekte Groß-/Kleinschreibung wichtig; sie sollten außerdem keine Leerzeichen enthalten.
	4) Klicken Sie einmal in das Feld auf der rechten Seite und geben Sie den Text ein, den Sie der Variablen zuweisen möchten.

	7.4. So zeigen Sie die Definition einer Textvariablen an
	1) Wählen Sie „Datei“ > „Formulareigenschaften“.
	2) Klicken Sie auf die Registerkarte „Variablen“ und wählen Sie die Variable in der Variablenliste aus. Der zugehörige Text wird in dem Feld auf der rechten Seite angezeigt.

	7.5. So zeigen Sie die Definition einer Textvariablen an
	1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.
	2) Klicken Sie auf die Registerkarte „Variablen“ und wählen Sie die Variable in der Variablenliste aus. Der zugehörige Text wird in dem Feld auf der rechten Seite angezeigt.

	7.6. So löschen Sie Textvariablen
	1) Wählen Sie „Datei“ > „Formulareigenschaften“.
	2) Wählen Sie auf der Registerkarte „Variablen“ die Variable und klicken Sie auf „Löschen“ .

	7.7. So löschen Sie Textvariablen
	1) Wählen Sie „Bearbeiten“ > „Formulareigenschaften“.
	2) Wählen Sie auf der Registerkarte „Variablen“ die Variable und klicken Sie auf „Löschen“ .

	7.8. Variablen in Berechnungen und Skripten verwenden

	8. Objekte in Berechnungen und Skripten referenzieren
	A.
	B.
	C.
	8.1. Objekteigenschaften und -werte referenzieren
	Vollständig qualifiziert
	Abgekürzt
	A.
	B.
	C.
	D.
	E.
	F.
	G.
	Verknpfte Links:

	8.2. Unbenannte und wiederholte Objekte referenzieren
	Verknpfte Links:

	8.3. Aktuelles Objekt referenzieren
	Verknpfte Links:

	8.4. Referenz-Syntax-Kurzbefehle für FormCalc
	8.4.1. Aktuelles Feld oder Objekt
	Notation
	Beispiel

	8.4.2. Stamm-Node des Datenmodells xfa.datasets.data
	Notation
	Beispiel

	8.4.3. Formularobjekt-Ereignis
	Notation
	Beispiel

	8.4.4. Stamm-Node des Formularmodells
	Notation
	Beispiel

	8.4.5. Host-Objekt
	Notation
	Beispiel

	8.4.6. Stamm-Node des Layoutmodells
	Notation
	Beispiel

	8.4.7. Datensatz aus einer Zusammenstellung von Daten
	Notation
	Beispiel

	8.4.8. Stamm-Node des Vorlagenmodells
	Notation
	Beispiel

	8.4.9. Stamm-Node des Datenmodells xfa.datasets
	Notation
	Beispiel

	8.4.10. Alle Formularobjekte auswählen
	Notation
	Beispiel

	8.4.11. Nach Objekten suchen, die Teil eines Unter-Containers sind
	Notation
	Beispiel

	8.4.12. Unbenannte Objekte bezeichnen oder Eigenschaften angeben
	Notation
	Beispiel

	8.4.13. Wert für das Vorkommen eines Objekts
	Notation
	Beispiel
	Verknpfte Links:

	9. JavaScript-Funktionen erstellen und wiederverwenden
	9.1. So erstellen Sie ein Skriptobjekt
	1) Erstellen Sie ein neues Formular oder öffnen Sie ein vorhandenes.
	2) Klicken Sie in der Palette „Hierarchie“ mit der rechten Maustaste auf ein Objekt auf Formularebene bzw. auf Teilformularebene und wählen Sie „Skriptobjekt einfügen“.
	3) (Optional) Klicken Sie mit der rechten Maustaste auf das Skriptobjekt und wählen Sie „Objekt umbenennen“.

	9.2. So fügen Sie einem Skriptobjekt Skripten hinzu
	1) Wählen Sie in der Palette „Hierarchie“ das Skriptobjekt „“ aus.
	2) Geben Sie im Feld "Skriptquelle" Ihr Skript ein.
	3) Zum Testen des Formulars klicken Sie auf die Registerkarte „PDF-Vorschau“.

	9.2.1. Beispiel

	9.3. So referenzieren Sie JavaScript-Funktionen in einem Skriptobjekt
	1) Wählen Sie ein Objekt im Formular und anschließend unter „Anzeigen“ ein Ereignis aus.
	2) Erstellen Sie eine Referenz zum Skriptobjekt und zu beliebigen Funktionen im Skriptobjekt. In der folgenden generischen Syntax wird davon ausgegangen, dass sich das Objekt, von dem aus das Skriptobjekt referenziert wird, in der Formularhierarchie ...
	3) Wenden Sie das neue Skript auf das Formularobjekt an und testen Sie es durch Anzeigen einer Formularvorschau auf der Registerkarte „PDF-Vorschau“.

	9.3.1. Beispiel

	10. Skriptfragmente verwenden
	10.1. Eigenschaften von Skriptfragmenten
	10.1.1. Quelldatei
	10.1.2. Fragmentname

	10.2. So erstellen Sie ein Skriptfragment
	1) Erstellen Sie ein Skriptobjekt.
	2) Klicken Sie in der Palette „Hierarchie“ mit der rechten Maustaste auf das Skriptobjekt und wählen Sie „Fragmente“ und dann „Fragment erstellen“.
	3) Zum Verwenden eines anderen Fragmentnamens geben Sie im Feld „Name“ den gewünschten Namen ein.
	4) (Optional) Geben Sie im Feld „Beschreibung“ eine Beschreibung des Fragments ein.
	5) Wählen Sie eine Methode zum Erstellen des Fragments:
	6) Klicken Sie auf OK.

	10.3. So fügen Sie ein Skriptfragment ein
	10.3.1. So fügen Sie ein Skriptfragment über die Palette „Fragmentbibliothek“ ein
	1) Wählen Sie in der Fragmentbibliothek das Skriptfragment aus.
	2) Ziehen Sie das Fragment auf ein Teilformular- oder Variablen-Objekt in der Palette „Hierarchie“.

	10.3.2. So fügen Sie ein Skriptfragment über das Menü „Einfügen“ ein
	1) Wählen Sie „Einfügen“ „Fragment“.
	2) Rufen Sie die Datei mit dem Fragment auf.
	3) Wählen Sie die Datei aus und klicken Sie auf „OK“. Das Fragment wird im Stammteilformular als dem Variablen-Objekt untergeordnetes Objekt angezeigt.
	Verknpfte Links:

	11. Debugging von Berechnungen und Skripten
	11.1. Warn- und Prüfmeldungen in der Palette „Bericht“ von Designer
	11.2. Debugging-Feedback mit der messageBox-Methode bereitstellen
	11.3. FormCalc
	11.4. JavaScript
	11.5. Informationen in ein Textfeld ausgeben
	11.6. JavaScript-Debugging
	11.6.1. JavaScript Debugger in Acrobat Professional
	11.6.2. So aktivieren Sie den JavaScript-Debugger für Designer
	1) Starten Sie Designer.
	2) Starten Sie Acrobat Professional.
	3) In Acrobat Professional wählen Sie „Bearbeiten“ > „Voreinstellungen“.
	4) Wählen Sie aus der linken Liste "JavaScript".
	5) Sofern nicht bereits aktiviert, wählen Sie „Acrobat JavaScript aktivieren“.
	6) Aktivieren Sie unter „JavaScript-Debugger“ die Option „JavaScript-Debugger nach dem Neustart von Acrobat aktivieren“.
	7) Wählen Sie "Interaktive Konsole aktivieren". Mit dieser Option können Sie den in der JavaScript-Konsole geschriebenen Code auswerten.
	8) Wählen Sie "Konsole bei Fehlern und Meldungen anzeigen". Mit dieser Option wird sichergestellt, dass die JavaScript-Konsole bei Falscheingaben hilfreiche Informationen anzeigt.
	9) Klicken Sie auf „OK“, um das Dialogfeld „Grundeinstellungen“ zu schließen.
	10) Beenden Sie Acrobat Professional.
	11) Klicken Sie in Designer auf die Registerkarte „PDF-Vorschau“.
	12) Drücken Sie die Tasten Strg+J, um den JavaScript-Debugger zu öffnen.

	11.6.3. So verhindern Sie, dass der JavaScript-Debugger in Designer ausgeblendet wird
	1) Klicken Sie im Windows Task-Manager auf die Registerkarte "Prozesse".
	2) Klicken Sie in der Spalte „Name“ mit der rechten Maustaste auf Acrobat.exe und wählen Sie „Prozess beenden“.

	11.6.4. Code mit der JavaScript-Konsole auswerten
	11.6.5. So werten Sie einen Teil einer Code-Zeile aus
	1) Markieren Sie den gewünschten Teil im Konsolenfenster und drücken Sie entweder die Eingabetaste auf der Zehnertastatur oder Strg+Enter auf der normalen Tastatur.

	11.6.6. So werten Sie eine einzelne Code-Zeile aus
	1) Platzieren Sie den Cursor in die gewünschten Zeile im Konsolenfenster und drücken Sie Enter auf der Zehnertastatur Strg+Enter auf der normalen Tastatur.

	11.6.7. So werten Sie mehrere Code-Zeilen aus
	1) Markieren Sie die Zeilen im Konsolenfenster und drücken Sie entweder die Eingabetaste auf der Zehnertastatur oder Strg+Enter auf der normalen Tastatur.

	11.6.8. So löschen Sie in der JavaScript-Konsole angezeigte Inhalte
	1) Klicken Sie im Konsolenfenster auf die Option zum Löschen.

	11.6.9. Debugging-Feedback für die JavaScript-Konsole bereitstellen
	11.6.10. Debugging-Feedback mit der alert-Methode bereitstellen
	Verknpfte Links:

	11.7. Tipps zum Debugging
	11.7.1. Musterdaten
	11.7.2. Masterseiten
	11.7.3. Erste Seite eines Formulars
	11.7.4. Inkrementelles Debugging
	11.7.5. Hierarchieansicht
	11.7.6. Skriptfehlermeldungen
	11.7.7. Syntaxfehler in FormCalc
	11.7.8. In einem Skriptobjekt definierte Funktionen
	11.7.9. Webdienstaufrufe
	11.7.10. Lange SOM-Ausdrücke
	11.7.11. SOM-Ausdrücke testen
	11.7.12. Skriptobjekte für das Debuggen von Formularentwürfen verwenden
	11.7.13. Beim Formularentwurf zu vermeidende Fehler

	12. Mit Host-Anwendungen arbeiten
	12.1. Eigenschaften und Methoden des Host-Skriptmodells
	12.2. Die Funktionalität des Host-Skriptmodells im Vergleich
	Verknpfte Links:

	13. Mit dem Ereignismodell arbeiten
	13.1. Eigenschaften und Methoden des Ereignismodells

	14. Von der Skripterstellung in Acrobat zu Designer wechseln
	Designer-Arbeitsbereich
	Skriptsprachen
	Referenzieren von Objekten, Eigenschaften und Methoden
	14.1. Acrobat-Formulare mit Skripten konvertieren
	Verknpfte Links:

	14.2. JavaScript-Objekte aus Acrobat in Designer verwenden
	Verknpfte Links:

	14.3. In Designer unterstützte JavaScript-Objekte aus Acrobat
	Verknpfte Links:

	15. Beispiele für gängige Aufgaben bei der Skripterstellung
	15.1. Hintergrundfarben von Feldern, Füllbereichen und Teilformularen ändern
	15.1.1. Skripten für die Hintergrundfarben von Teilformularen und Textfeldern
	15.1.2. Skripterstellung für die Hintergrundfarbe von Füllbereichen
	15.1.3. Skripterstellung für die Schaltfläche „Alles löschen“

	15.2. Objekte ein- und ausblenden
	15.2.1. Skripterstellung für die Präsenzwerte der Teilformulare
	15.2.2. Skripten für die Präsenzwerte der Textfelder
	15.2.3. Skripten für die Präsenzwerte der Schaltflächen
	15.2.4. Skripterstellung für die Zurücksetzung der Dropdown-Listen

	15.3. Objekte aus der Tab-Reihenfolge ausschließen
	15.4. Visuelle Eigenschaften von Objekten im Client ändern
	15.4.1. Skripten für das Kontrollkästchen "Feld verschieben"
	15.4.2. Skripten für das Kontrollkästchen "Feldbreite vergrößern"
	15.4.3. Skripterstellung für das Kontrollkästchen „Feldhöhe vergrößern“
	15.4.4. Skripten für das Kontrollkästchen "Objektrandfarbe ändern"
	15.4.5. Skripten für das Kontrollkästchen "Füllfarbe des ausfüllbaren Bereichs ändern"
	15.4.6. Skripterstellung für das Kontrollkästchen „Passend auf Breite des Werts erweitern“
	15.4.7. Skripterstellung für das Kontrollkästchen „Feld ausblenden“
	15.4.8. Skripten für das Kontrollkästchen "Schrift des Werts ändern"
	15.4.9. Skripterstellung für das Kontrollkästchen „Schriftgröße ändern“
	15.4.10. Skripterstellung für das Kontrollkästchen „Textfeldwert vertikal ausrichten“
	15.4.11. Skripterstellung für das Kontrollkästchen „Textfeldwert horizontal ausrichten“
	15.4.12. Skripterstellung für das Kontrollkästchen „Vorgegebenen Wert anzeigen“
	15.4.13. Skripten für das Kontrollkästchen "Beschriftungstext ändern"
	15.4.14. Skripterstellung für das Kontrollkästchen „Feldrand von 3D in ausgefülltes Rechteck ändern“
	15.4.15. Skripten für die Schaltfläche "Alle Kontrollkästchen deaktivieren"

	15.5. Aktuellen oder vorherigen Wert einer Dropdown-Liste abrufen
	15.5.1. Skripterstellung zum Ausfüllen des Textfelds „Aktueller Wert“
	15.5.2. Skripten zum Ausfüllen des Textfelds "Vorheriger Wert 1"
	15.5.3. Skripten zum Ausfüllen des Textfelds "Vorheriger Wert 2"

	15.6. Beim Kopieren von Feldwerten die Rich-Text-Formatierung beibehalten
	15.6.1. Skripten für die Schaltfläche „Rich-Text kopieren“

	15.7. Höhe eines Feldes zur Laufzeit anpassen
	15.7.1. Skripten für die Schaltfläche "Erweitern"

	15.8. Felder zur Laufzeit als „Erforderlich“ festlegen
	15.8.1. Skripten für die Schaltfläche "Als 'Erforderlich' festlegen"

	15.9. Feldsummen berechnen
	15.9.1. Skripten zur Berechnung der Summe sich wiederholender Felder in einem Formular
	15.9.2. Skripten zur Berechnung der Summe sich wiederholender Felder
	15.9.3. Skripten zur Berechnung der Summe der Felder auf der Seite

	15.10. Felder als Reaktion auf Benutzeraktionen hervorheben
	15.10.1. Skripten zum Kennzeichnen eines ausgewählten Feldes mit einem blauen Rand
	15.10.2. Skripten für die Schaltfläche "Daten überprüfen"

	15.11. Die Werte des aktuellen Teilformulars zurücksetzen
	15.11.1. Skripten für die Werte in der linken Spalte

	15.12. Präsenz von Formularentwurfsobjekten ändern
	15.13. Teilformulare mit Hilfe der Eigenschaften des Instanzmanagers steuern
	15.13.1. Skripten zur Ausgabe des Wertes der Eigenschaft "count" im Meldungsfeld
	15.13.2. Skripten zur Ausgabe des Wertes der Eigenschaft "max" im Meldungsfeld
	15.13.3. Skripten zur Ausgabe des Wertes der Eigenschaft "min" im Meldungsfeld
	15.13.4. Skripten zur Ausgabe des Namens der Teilformulareigenschaft im Meldungsfeld

	15.14. Teilformulare mit Hilfe der Methoden des Instanzmanagers steuern
	15.14.1. Skripten zum Feststellen, ob einem Formular die Höchstanzahl von Teilformularen hinzugefügt wurde
	15.14.2. Skripterstellung zum Feststellen, ob aus dem Formular weitere Teilformulare entfernt werden können
	15.14.3. Skripten zum Festlegen, dass im Formular vier Teilformularinstanzen erscheinen sollen
	15.14.4. Skripten zum Vertauschen des ersten und zweiten Teilformulars im Formular

	15.15. Teilformulare mit Hilfe des Instanzmanagers zur Laufzeit steuern
	15.15.1. Skripten für die Schaltfläche „Neues Teilformular hinzufügen“
	15.15.2. Skripten für die Schaltfläche „Teilformular entfernen“
	15.15.3. Skripten für die Schaltfläche „Instanz unten einfügen“
	15.15.4. Skripten für die Schaltfläche „Diese Instanz löschen“
	15.15.5. Skripten für die Schaltfläche „Eine Zeile nach oben“
	15.15.6. Skripten für die Schaltfläche „Eine Zeile nach unten“

