Variations | Substance 3D Automation ToolKit

  1. Substance 3D home
  2. Home
  3. Command Line Tools
    1. Command Line overview
    2. sbsbaker
      1. sbsbaker overview
      2. sbsbaker command line options
      3. sbsbaker Example Command Lines
    3. sbscooker
      1. sbscooker overview
      2. sbscooker command line options
      3. sbscooker pattern variables
    4. sbsmtools
      1. sbsmtools overview
      2. sbsmtools command line options
    5. sbsmutator
      1. sbsmutator overview
      2. sbsmutator command line options
      3. sbsmutator Example Command Lines
    6. sbsrender
      1. sbsrender overview
      2. sbsrender base parameters and pattern variables
      3. sbsrender command line options
      4. sbsrender example command lines
    7. sbsupdater
      1. sbsupdater overview
      2. sbsupdater command line options
  4. Pysbs - Python API
    1. Pysbs - Python API overview
    2. Getting started
    3. General topics
      1. Basic manipulation
      2. Substance creation
      3. Substances modification
      4. Dependencies management
      5. PySbs batchtools module
      6. metadata manipulation
      7. SAT demos
      8. Edit sbsar with SBSARManager
      9. Spot Colors
      10. Thumbnail creation with SAT
    4. Examples
      1. demohelloworld
      2. demos
      3. demos_batchtools
      4. script_update_with_sbsupdater
    5. API Content
      1. API Content overview
      2. Substance definitions
        1. Common interfaces
          1. basegraph
          2. package
          3. sbsarobject
          4. sbsobject
        2. compnode
          1. compnode overview
          2. common
          3. compimplementation
          4. paramgraph
        3. context projectmgr
        4. graph
          1. graph overview
          2. function
          3. inputparameters
          4. output
        5. mdl
          1. mdlannotation
          2. mdlcommon
          3. mdldictionaries
          4. mdlenum
          5. mdlgraph
          6. mdllibclasses
          7. mdlmanager
          8. mdlnode
          9. mdlnodeimpl
          10. mdloperand
          11. mdlsbsbridge
        6. modelgraphindex
          1. modelannotationnames
          2. modelgraph
          3. modelgraphgenerator
          4. modelgraphimplementation
          5. modelnodenames
          6. modeloperand
          7. modulegraphindex
          8. moduleannotation
          9. moduleconnection
          10. modulegraph
          11. modulegraphgenerator
          12. modulegraphimplementation
          13. modulegraphlibrary
          14. modulegraphregister
          15. modulenode
          16. modulenodeimplementation
          17. modulenodeinstance
          18. moduleoperand
          19. moduleoutputbridging
          20. moduleparaminput
        7. params
          1. params overview
          2. dynamicvalue
          3. paramnode
        8. projectmgrdoc
        9. sbsarchive
          1. sbsarchive overview
          2. sbsarenum
          3. sbsargraph
          4. sbsargui
          5. sbsarguiwidgets
          6. sbsarmanager
        10. sbscommon
          1. connections
          2. gui
          3. nodes
          4. values
        11. sbspreset
        12. sbsproject
        13. substance
          1. substance overview
          2. content
          3. resource
      3. Libraries
        1. sbsenum
        2. sbslibrary
          1. sbslibrary overview
          2. sbsdictionaries
          3. sbsfilters
          4. sbsfunctions
          5. sbsfxmapnodes
          6. sbslibclasses
          7. sbswidgets
        3. sbsbakerslibrary
          1. sbsbakerslibrary overview
          2. sbsbakersdef
          3. sbsbakersdefaultprops
          4. sbsbakersdictionaries
          5. sbsbakersenum
          6. sbsbakingconverter
          7. sbsbakingconverterparam
          8. sbsbakingparameters
          9. sbsdialogstate
          10. sbsscenedata
        4. Helpers
          1. sbscleaner
          2. sbsexporter
          3. sbsgenerator
          4. sbsparser
          5. sbswriter
          6. qtclasses
            1. qtclasses overview
            2. qtvariantreader
            3. qtvariantwriter
          7. psdparser
          8. sbsimpactmanager
          9. batchtools
          10. autograph
            1. ag_functions
            2. ag_layout
            3. ag_types
          11. info_mesh_parser
          12. sbsbaker_info_handlers
          13. sbsrender_render_handlers
          14. output_handlers
          15. spotcolorinfo_handler
          16. thumbnail
          17. batchtools overview
        5. Execution context
          1. context
          2. functions
        6. API Change log
  5. Samples
    1. Samples overview
    2. Texturing Template Demo
    3. Batch Tools Demo
    4. Variations
    5. Texture Mat
    6. Pixel Processor Ray tracer
  6. Setup and Getting Started
    1. Setup and Getting Started overview
    2. Compatibility
    3. Frequently asked Questions
    4. Known issues
    5. SAT Cookbook
    6. Use Pysbs in different python interpreter (maya, sd, blender...)
  7. Integrations
    1. Substance Maya toolset
      1. Substance Maya Toolset overview
      2. Installing
      3. Launching
      4. Baking
        1. Baking overview
        2. Export parameters
        3. Baker parameters
        4. Mesh setup
        5. Using a template
      5. Changelog
  8. Changelog overview

Variations

Overview

The variations demo shows how a single procedural .sbs file can be used to render out a lot of randomized permutations.The sample substance file is a procedural network for generating brick patterns. It has a few parameters that is randomized by a python script. The output is a set of maps representing the permutations. It also outputs .sbs files with the defaults setup to give the same results as the rendered map in case you want to load a specific permutation a tool.

The data used in the demo are:

  • The variations.py script
  • batch_utilities.py, demo_cmd.py and demos.py for utility functions
  • The substance python api (for finding paths to command line tools and resource library)
  • opus.sbs and its resources in the variantions directory

The output will be put in the variations/_outputs directory

In order to run the demo, make sure python is installed and in your path environment and that the substance python api is installed. Then go to the samples directory and run:

python variations.py

It will now invoke a set of calls to different command line tools to generate a set of maps and .sbs files with different parameters.

Note: At the moment the sbs files generated are not identical with what comes out of the sample since the random seed used when generating the textures are not set in the .sbs file defaults.

Details

The source graph opus.sbs might look intimidating at first:

Most of what drives it is a node where an input tiling is selected:

By changing the tiling a number of different patterns can be selected:

There are 4 parameters exposed to control the tiling:

  • Pattern Selection refers to what basic tiling to use from a few presets.
  • X Amount is a value controlling how many tiles there are in the X direction
  • Y Amount is a value controlling how many tiles there are in the Y direction
  • Crack Scale represents how large the cracks in the tiling should be

In the file variations.py there is a definition for how the parameters should be tweaked during the permutation creation. In the case of the opus graph we randomize the values in ranges that makes sense for the graph.

materials = {    'opus' : {        'sbs_file' : os.path.join(data_path, 'opus.sbs'),        'params' : {            'pattern_selection' : ('random_int', [1], [5]),            'x_amount' : ('random_int', [5], [10]),            'y_amount' : ('random_int', [5], [10]),            'crack_scale' : ('random_int', [2], [4]),        }    }}
  • When running the script it will first cook opus sbs to an sbsar file ready to be rendered.
  • It will then put a bunch of calls to sbsrender and sbsmutator in a queue for rendering.
  • It will then let a thread pool execute all these jobs to output the images in a multithreaded fashion if running on a multi core machine.

The output in the variations/_output will then be filled up with new maps and substance files:

Get help faster and easier

New user?